Zagami, a well characterized SNC meteorite, represents a reference sample to verify the feasibility of the non-destructive infrared micro-spectroscopy technique to extract spectral signatures from individual mineral phases in a meteorite sample. For the first time individual infrared spectra of the major mineral phases, in the 6000 600 cm-1 (1.67 16.7 μm) spectral interval, whose identification is confirmed by energy dispersive X-ray analysis and backscattered imaging, are measured. The signatures of the main mineral phases we identified in the Zagami chip are: (1) maskelynite characterized by broad and smooth SiO vibrational bands in the 1000 cm-1 spectral region; (2) crystalline pyroxenes showing well defined fine structures; and (3) an oxide mineral phase with an almost featureless and flat spectrum. In the part of the spectrum centered around 2 μm, by analyzing the different positions of the Fe2+ bands, we were able to discern the high-Ca from the low-Ca pyroxene phases. This result demonstrates that by means of the infrared micro-spectroscopy technique it is possible to retrieve directly the composition of pyroxenes in the En Fs Wo system, without relying on the use of deconvolution techniques. In addition IR signatures due to water and aliphatic hydrocarbons were observed to be more abundant in the pyroxenes than in maskelynite. This could be an indication that the organic and water signatures are due to indigenous compounds in Zagami rather than laboratory contamination, however, further investigations are necessary before this conclusion can be confirmed.

Infrared Micro-spectroscopy of the Martian meteorite Zagami: Extraction of Individual Mineral Phase Spectra

ROTUNDI, Alessandra;
2006-01-01

Abstract

Zagami, a well characterized SNC meteorite, represents a reference sample to verify the feasibility of the non-destructive infrared micro-spectroscopy technique to extract spectral signatures from individual mineral phases in a meteorite sample. For the first time individual infrared spectra of the major mineral phases, in the 6000 600 cm-1 (1.67 16.7 μm) spectral interval, whose identification is confirmed by energy dispersive X-ray analysis and backscattered imaging, are measured. The signatures of the main mineral phases we identified in the Zagami chip are: (1) maskelynite characterized by broad and smooth SiO vibrational bands in the 1000 cm-1 spectral region; (2) crystalline pyroxenes showing well defined fine structures; and (3) an oxide mineral phase with an almost featureless and flat spectrum. In the part of the spectrum centered around 2 μm, by analyzing the different positions of the Fe2+ bands, we were able to discern the high-Ca from the low-Ca pyroxene phases. This result demonstrates that by means of the infrared micro-spectroscopy technique it is possible to retrieve directly the composition of pyroxenes in the En Fs Wo system, without relying on the use of deconvolution techniques. In addition IR signatures due to water and aliphatic hydrocarbons were observed to be more abundant in the pyroxenes than in maskelynite. This could be an indication that the organic and water signatures are due to indigenous compounds in Zagami rather than laboratory contamination, however, further investigations are necessary before this conclusion can be confirmed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/15425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact