The identification of mode-I parameters of a cohesive-zone model for the analysis of adhesive joints is presented. It is based on an experimental–numerical methodology whereby the optimal parameters are obtained as the solution of a nonlinear programming problem. The data set for inverse analysis is provided either by local kinematic data, by global static data, or a combination of the two. Parameter sensitivities are computed via direct differentiation and identification exercises are discussed that show the effectiveness of the procedure and its stability with respect to noise and time–space sampling.

Characterization of a cohesive-zone model describing damage and de-cohesion at bonded interfaces. Sensitivity analysis and mode-I parameter identification

VALOROSO, Nunziante;
2010

Abstract

The identification of mode-I parameters of a cohesive-zone model for the analysis of adhesive joints is presented. It is based on an experimental–numerical methodology whereby the optimal parameters are obtained as the solution of a nonlinear programming problem. The data set for inverse analysis is provided either by local kinematic data, by global static data, or a combination of the two. Parameter sensitivities are computed via direct differentiation and identification exercises are discussed that show the effectiveness of the procedure and its stability with respect to noise and time–space sampling.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/15375
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 45
social impact