This paper presents a cursive character recognizer, a crucial module in any Cursive Script Recognition system based on a segmentation and recognition approach. The character classification is achieved by combining the use of neural gas (NG) and learning vector quantization (LVQ). NG is used to verify whether lower and upper case version of a certain letter can be joined in a single class or not. Once this is done for every letter, it is possible to find an optimal number of classes maximizing the accuracy of the LVQ classifier. A database of 58000 characters was used to train and test the models. The performance obtained is among the highest presented in the literature for the recognition of cursive characters.

Combining Neural Gas and Learning Vector Quantization for Cursive Character Recognition

CAMASTRA, Francesco;
2003

Abstract

This paper presents a cursive character recognizer, a crucial module in any Cursive Script Recognition system based on a segmentation and recognition approach. The character classification is achieved by combining the use of neural gas (NG) and learning vector quantization (LVQ). NG is used to verify whether lower and upper case version of a certain letter can be joined in a single class or not. Once this is done for every letter, it is possible to find an optimal number of classes maximizing the accuracy of the LVQ classifier. A database of 58000 characters was used to train and test the models. The performance obtained is among the highest presented in the literature for the recognition of cursive characters.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/15288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 28
social impact