We prove some regularity results for a priori bounded local minimizers of non-autonomous integral functionals of the form (Formula presented.) under the constraint v≥ψ a.e. in Ω, where ψ is a fixed obstacle function. Assuming that the coefficients of the partial map x↦DξF(x,ξ) satisfy a suitable Sobolev regularity, we are able to obtain higher differentiability and Lipschitz continuity results for the local minimizers.

Gradient regularity for a class of elliptic obstacle problems

Giova, Raffaella
;
Grimaldi, Antonio Giuseppe;
2025-01-01

Abstract

We prove some regularity results for a priori bounded local minimizers of non-autonomous integral functionals of the form (Formula presented.) under the constraint v≥ψ a.e. in Ω, where ψ is a fixed obstacle function. Assuming that the coefficients of the partial map x↦DξF(x,ξ) satisfy a suitable Sobolev regularity, we are able to obtain higher differentiability and Lipschitz continuity results for the local minimizers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/152398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact