Synthetic aperture radar (SAR) recognition systems often need to collect new data and update the network accordingly. However, the network faces the challenge of catastrophic forgetting, where previously learned knowledge might be lost during the incremental learning of new data. To improve the applicability and sustainability of SAR target classification methods, we propose a multi-stage regularization-based class-incremental learning (CIL) method for SAR targets, called SCF-CIL, which addresses catastrophic forgetting. This method offers three main contributions. First, for the feature extractor, we fuse the convolutional neural network features with the scattering center features using a cross-attention feature fusion structure, ensuring both the plasticity and stability of the extracted features. Next, an overfitting training strategy is applied to provide clustering space for unseen classes with an acceptable trade-off in the accuracy of the current classes. Finally, we analyze the influence of training with imbalanced data on the last fully connected layer and introduce a multi-stage regularization method by dividing the calculation of the fully connected layer into three parts and applying regularization to each. Our experiments on SAR datasets demonstrate the effectiveness of these improvements.

SCF-CIL: A Multi-Stage Regularization-Based SAR Class-Incremental Learning Method Fused with Electromagnetic Scattering Features

Zhang, Yunpeng
Methodology
;
Vitale, Sergio
Validation
2025-01-01

Abstract

Synthetic aperture radar (SAR) recognition systems often need to collect new data and update the network accordingly. However, the network faces the challenge of catastrophic forgetting, where previously learned knowledge might be lost during the incremental learning of new data. To improve the applicability and sustainability of SAR target classification methods, we propose a multi-stage regularization-based class-incremental learning (CIL) method for SAR targets, called SCF-CIL, which addresses catastrophic forgetting. This method offers three main contributions. First, for the feature extractor, we fuse the convolutional neural network features with the scattering center features using a cross-attention feature fusion structure, ensuring both the plasticity and stability of the extracted features. Next, an overfitting training strategy is applied to provide clustering space for unseen classes with an acceptable trade-off in the accuracy of the current classes. Finally, we analyze the influence of training with imbalanced data on the last fully connected layer and introduce a multi-stage regularization method by dividing the calculation of the fully connected layer into three parts and applying regularization to each. Our experiments on SAR datasets demonstrate the effectiveness of these improvements.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/152058
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact