Background and Objective: In recent years, DNA methylation-tumor classification based on artificial intelligence algorithms has led to a notable improvement in diagnostic accuracy compared to traditional machine learning methods. In cancer, the methylation pattern likely reflects both the cell of origin and somatically acquired DNA methylation changes, making this epigenetic modification an ideal tool for tumor classification. We propose an in-depth method based on the Convolutional Neural Network for the DNA methylation-based classification of papillary thyroid carcinoma (PTC) and its follicular (fvPTC) and classical (cvPTC) subtypes. Methods: To address this issue, we first performed a pan-cancer analysis to train a convolutional 1-D Neural Network (CNN) using supervised learning. Then, we evaluated the robustness of the net on an independent PTC dataset and assessed its ability to classify normal (N=56) versus tumor (N=461) samples and fvPTC (N=102) versus cvPTC (N=359). We then compared its performance with 4 machine learning models (logistic regression with elastic net penalty, quadratic discriminant analysis, support vector classifier with RBF kernel, and random forest). Results: By using RELU activation function and leaving out liquid tumors, our results show a remarkable performance of the neural network in classifying cancer and normal samples when applied to pan-cancer data (Validation AUC = 0.9903 and Validation Loss = 0.112). When applied to the thyroid independent dataset, the proposed Neural Net architecture successfully discriminates tumor versus normal samples (AUC = 0.91 +/- 0.05) and follicular versus classical PTC subtypes (AUC = 0.80 +/- 0.05), outperforming traditional machine learning algorithms. Conclusions: In conclusion, the study highlights the effectiveness of CNNs in the methylation based classification of thyroid tumors and their subtypes, demonstrating its ability to capture subtle epigenetic differences with minimal preprocessing. This versatility makes the model adaptable for classifying other tumor types. Also, the findings emphasize the potential relevance of AI algorithms in addressing complex diagnostic challenges and supporting clinical decisions. This research lays the foundation for developing robust and generalizable models that can advance precision oncology in cancer diagnostics.
Subtypes detection of papillary thyroid cancer from methylation assay via Deep Neural Network
Soricelli A.;
2025-01-01
Abstract
Background and Objective: In recent years, DNA methylation-tumor classification based on artificial intelligence algorithms has led to a notable improvement in diagnostic accuracy compared to traditional machine learning methods. In cancer, the methylation pattern likely reflects both the cell of origin and somatically acquired DNA methylation changes, making this epigenetic modification an ideal tool for tumor classification. We propose an in-depth method based on the Convolutional Neural Network for the DNA methylation-based classification of papillary thyroid carcinoma (PTC) and its follicular (fvPTC) and classical (cvPTC) subtypes. Methods: To address this issue, we first performed a pan-cancer analysis to train a convolutional 1-D Neural Network (CNN) using supervised learning. Then, we evaluated the robustness of the net on an independent PTC dataset and assessed its ability to classify normal (N=56) versus tumor (N=461) samples and fvPTC (N=102) versus cvPTC (N=359). We then compared its performance with 4 machine learning models (logistic regression with elastic net penalty, quadratic discriminant analysis, support vector classifier with RBF kernel, and random forest). Results: By using RELU activation function and leaving out liquid tumors, our results show a remarkable performance of the neural network in classifying cancer and normal samples when applied to pan-cancer data (Validation AUC = 0.9903 and Validation Loss = 0.112). When applied to the thyroid independent dataset, the proposed Neural Net architecture successfully discriminates tumor versus normal samples (AUC = 0.91 +/- 0.05) and follicular versus classical PTC subtypes (AUC = 0.80 +/- 0.05), outperforming traditional machine learning algorithms. Conclusions: In conclusion, the study highlights the effectiveness of CNNs in the methylation based classification of thyroid tumors and their subtypes, demonstrating its ability to capture subtle epigenetic differences with minimal preprocessing. This versatility makes the model adaptable for classifying other tumor types. Also, the findings emphasize the potential relevance of AI algorithms in addressing complex diagnostic challenges and supporting clinical decisions. This research lays the foundation for developing robust and generalizable models that can advance precision oncology in cancer diagnostics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


