The emergence of exascale computing systems presents both opportunities and challenges in scientific computing, particularly for complex mathematical models requiring high-performance implementations. This paper addresses these challenges in the context of biomedical applications, specifically focusing on tumor angiogenesis modeling. We present a parallel implementation for solving a system of partial differential equations that describe the dynamics of tumor-induced blood vessel formation. Our approach leverages the Julia programming language and its CUDA capabilities, combining a high-level paradigm with efficient GPU acceleration. The implementation incorporates advanced optimization strategies for memory management and kernel organization, demonstrating significant performance improvements for large-scale simulations while maintaining numerical accuracy. Experimental results confirm the performance gains and reliability of the proposed parallel implementation.

Accelerated Numerical Simulations of a Reaction-Diffusion- Advection Model Using Julia-CUDA

Ciaramella A.;De Angelis D.;De Luca P.;Marcellino L.
2025-01-01

Abstract

The emergence of exascale computing systems presents both opportunities and challenges in scientific computing, particularly for complex mathematical models requiring high-performance implementations. This paper addresses these challenges in the context of biomedical applications, specifically focusing on tumor angiogenesis modeling. We present a parallel implementation for solving a system of partial differential equations that describe the dynamics of tumor-induced blood vessel formation. Our approach leverages the Julia programming language and its CUDA capabilities, combining a high-level paradigm with efficient GPU acceleration. The implementation incorporates advanced optimization strategies for memory management and kernel organization, demonstrating significant performance improvements for large-scale simulations while maintaining numerical accuracy. Experimental results confirm the performance gains and reliability of the proposed parallel implementation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/146878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact