The ultimate strength of platings under compression is one of the most important factors to be addressed in the ship design. Current Rules for ship structural design generally provide explicit strength check criteria against buckling for simply supported and clamped platings. Nevertheless, ship platings generally exhibit an intermediate behaviour between the simple support and the clamped conditions, which implies that the torsional stiffness of supporting members should be duly considered. Hence, the main aim of this study is the development of new design formulas for the ultimate strength of platings under uniaxial compression, with short and/or long edges elastically restrained against torsion. In this respect, two benchmark studies are performed. The former is devoted to the development of new equations for the elastic buckling coefficients of platings with edges elastically restrained against torsion, based on the results of the eigenvalue buckling analysis, performed by Ansys Mechanical APDL. The latter investigates the ultimate strength of platings with elastically restrained edges, by systematically varying the plate slenderness ratio and the torsional stiffness of supporting members. Finally, the effectiveness of the new formulation is checked against a wide number of finite element (FE) simulations, to cover the entire design space of ship platings.
Ultimate Strength of Platings Under Uniaxial Compression with Edges Elastically Restrained Against Torsion: A New Comprehensive Approach
Piscopo V.
2024-01-01
Abstract
The ultimate strength of platings under compression is one of the most important factors to be addressed in the ship design. Current Rules for ship structural design generally provide explicit strength check criteria against buckling for simply supported and clamped platings. Nevertheless, ship platings generally exhibit an intermediate behaviour between the simple support and the clamped conditions, which implies that the torsional stiffness of supporting members should be duly considered. Hence, the main aim of this study is the development of new design formulas for the ultimate strength of platings under uniaxial compression, with short and/or long edges elastically restrained against torsion. In this respect, two benchmark studies are performed. The former is devoted to the development of new equations for the elastic buckling coefficients of platings with edges elastically restrained against torsion, based on the results of the eigenvalue buckling analysis, performed by Ansys Mechanical APDL. The latter investigates the ultimate strength of platings with elastically restrained edges, by systematically varying the plate slenderness ratio and the torsional stiffness of supporting members. Finally, the effectiveness of the new formulation is checked against a wide number of finite element (FE) simulations, to cover the entire design space of ship platings.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.