We study the local boundedness of minimizers of non uniformly elliptic integral functionals with a suitable anisotropic p,q- growth condition. More precisely, the growth condition of the integrand function f(x,∇u) from below involves different pi>1 powers of the partial derivatives of u and some monomial weights |xi|αjavax.xml.bind.JAXBElement@2622ea6pjavax.xml.bind.JAXBElement@6159b4dc with αi∈[0,1) that may degenerate to zero. Otherwise from above it is controlled by a q power of the modulus of the gradient of u with q≥maxipi and an unbounded weight μ(x). The main tool in the proof is an anisotropic Sobolev inequality with respect to the weights |xi|αjavax.xml.bind.JAXBElement@1fd02c1apjavax.xml.bind.JAXBElement@3ee15ae7.

Local Boundedness for Minimizers of Anisotropic Functionals with Monomial Weights

Feo F.;Passarelli di Napoli A.;
2024-01-01

Abstract

We study the local boundedness of minimizers of non uniformly elliptic integral functionals with a suitable anisotropic p,q- growth condition. More precisely, the growth condition of the integrand function f(x,∇u) from below involves different pi>1 powers of the partial derivatives of u and some monomial weights |xi|αjavax.xml.bind.JAXBElement@2622ea6pjavax.xml.bind.JAXBElement@6159b4dc with αi∈[0,1) that may degenerate to zero. Otherwise from above it is controlled by a q power of the modulus of the gradient of u with q≥maxipi and an unbounded weight μ(x). The main tool in the proof is an anisotropic Sobolev inequality with respect to the weights |xi|αjavax.xml.bind.JAXBElement@1fd02c1apjavax.xml.bind.JAXBElement@3ee15ae7.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/131776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact