This paper presents a design procedure and a simulation model of a novel concentrating PVT collector. The layout of the PVT system under investigation was derived from a prototype recently presented in literature and commercially available. The prototype consisted in a parabolic trough concentrator and a linear triangular receiver. In that prototype, the bottom surfaces of the receiver are equipped with mono-crystalline silicon cells whereas the top surface is covered by an absorbing surface. The aperture area of the parabola was covered by a glass in order to improve the thermal efficiency of the system. In the modified version of the collector considered in this paper, two changes are implemented: the cover glass was eliminated and the mono-crystalline silicon cells were replaced by triple-junction cells. In order to analyze PVT performance, a detailed mathematical model was implemented. This model is based on zero-dimensional energy balances. The simulation model calculates the temperatures of the main components of the system and the main energy flows Results showed that the performance of the system is excellent even when the fluid temperature is very high (>100 °C). Conversely, both electrical and thermal efficiencies dramatically decrease when the incident beam radiation decreases. © 2012 by the authors.

Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model

Calise, Francesco;Vanoli, Laura
2012-01-01

Abstract

This paper presents a design procedure and a simulation model of a novel concentrating PVT collector. The layout of the PVT system under investigation was derived from a prototype recently presented in literature and commercially available. The prototype consisted in a parabolic trough concentrator and a linear triangular receiver. In that prototype, the bottom surfaces of the receiver are equipped with mono-crystalline silicon cells whereas the top surface is covered by an absorbing surface. The aperture area of the parabola was covered by a glass in order to improve the thermal efficiency of the system. In the modified version of the collector considered in this paper, two changes are implemented: the cover glass was eliminated and the mono-crystalline silicon cells were replaced by triple-junction cells. In order to analyze PVT performance, a detailed mathematical model was implemented. This model is based on zero-dimensional energy balances. The simulation model calculates the temperatures of the main components of the system and the main energy flows Results showed that the performance of the system is excellent even when the fluid temperature is very high (>100 °C). Conversely, both electrical and thermal efficiencies dramatically decrease when the incident beam radiation decreases. © 2012 by the authors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/130778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? ND
social impact