Given a Banach space E with a supremum type norm induced by a sequence L = (Lj) of linear forms Lj : X → R on the Banach space X, we prove that if the unit ball BX is σ(X, L)compact then E has a predual E? with an atomic decomposition. We extend results from [7] where X is assumed a reflexive Banach space.

Atomic decomposition for preduals of some Banach spaces

D'Onofrio L.;
2020-01-01

Abstract

Given a Banach space E with a supremum type norm induced by a sequence L = (Lj) of linear forms Lj : X → R on the Banach space X, we prove that if the unit ball BX is σ(X, L)compact then E has a predual E? with an atomic decomposition. We extend results from [7] where X is assumed a reflexive Banach space.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/129576
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact