Given a Banach space E with a supremum type norm induced by a sequence L = (Lj) of linear forms Lj : X → R on the Banach space X, we prove that if the unit ball BX is σ(X, L)compact then E has a predual E? with an atomic decomposition. We extend results from [7] where X is assumed a reflexive Banach space.
Atomic decomposition for preduals of some Banach spaces
D'Onofrio L.;
2020-01-01
Abstract
Given a Banach space E with a supremum type norm induced by a sequence L = (Lj) of linear forms Lj : X → R on the Banach space X, we prove that if the unit ball BX is σ(X, L)compact then E has a predual E? with an atomic decomposition. We extend results from [7] where X is assumed a reflexive Banach space.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.