Increasing aridity and subsequent water scarcity are currently among the major problems of agriculture. Rainwater harvesting could represent a way to tackle this issue, and, as a consequence, scientific research has been more and more focused on such topic. On the other hand, few scientific studies related to economic and environmental assessment of rainwater harvesting systems in agriculture are available. The present study carried out an economic and environmental analysis of two different systems for rainwater harvesting: a typical pond and an innovative flexible water storage system (FWSS). The environmental and economic performance of the systems was compared using the Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) methodologies, referring to a functional unit (FU) of 1 m3 of storable water. The FWSS showed better environmental end economic performance than the pond system, resulting with both lower environmental impacts (17.04 g per m3 CO2 vs 28.2 g per m3 CO2 ) and lower costs (16.94 € per m3 vs 20.41 € per m3 ). Moreover, the pond system was more impactful than the FWSS for all the 17 categories investigated. Therefore, the FWSS can be a suitable solution for water harvesting in agriculture sector, showing interesting features for farmers.

Economic and Environmental Assessment of Two Different Rain Water Harvesting Systems for Agriculture

Palmieri N
2021-01-01

Abstract

Increasing aridity and subsequent water scarcity are currently among the major problems of agriculture. Rainwater harvesting could represent a way to tackle this issue, and, as a consequence, scientific research has been more and more focused on such topic. On the other hand, few scientific studies related to economic and environmental assessment of rainwater harvesting systems in agriculture are available. The present study carried out an economic and environmental analysis of two different systems for rainwater harvesting: a typical pond and an innovative flexible water storage system (FWSS). The environmental and economic performance of the systems was compared using the Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) methodologies, referring to a functional unit (FU) of 1 m3 of storable water. The FWSS showed better environmental end economic performance than the pond system, resulting with both lower environmental impacts (17.04 g per m3 CO2 vs 28.2 g per m3 CO2 ) and lower costs (16.94 € per m3 vs 20.41 € per m3 ). Moreover, the pond system was more impactful than the FWSS for all the 17 categories investigated. Therefore, the FWSS can be a suitable solution for water harvesting in agriculture sector, showing interesting features for farmers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/128209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 6
social impact