The growing demand in food and non-food industries for camelina oil is driving the interest of farmers and contractors in investing in such feedstock. Nonetheless, the cost, performance and critical aspects related to the harvesting stage are still not properly investigated. In the present study, an ad-hoc test was performed in Spain in order to fulfill this gap. The results support the hypothesis to harvest camelina seeds with the same combine harvester used for cereal harvesting without further investment. Theoretical field capacity (TFC), effective field capacity (EFC), material capacity (MC), and field efficiency (FE) were 4.34 ha h−1 , 4.22 ha h−1 , 4.66 Mg h−1 FM, and 97.24%, respectively. The harvesting cost was estimated in 48.51 € ha−1 . Approximately, the seed loss of 0.057 ± 0.028 Mg ha−1 FM was due to the impact of the combine harvester header and dehiscence of pods, whilst 0.036 ± 0.006 Mg ha−1 FM of seeds were lost due to inefficiency of the threshing system of the combine harvester. Adjustment of the working speed of the combine and the rotation speed of the reel may help to reduce such loss.

Assessing the Camelina (Camelina sativa (L.) Crantz) Seed Harvesting Using a Combine Harvester: A Case-Study on the Assessment of Work Performance and Seed Loss

Palmieri N;
2021-01-01

Abstract

The growing demand in food and non-food industries for camelina oil is driving the interest of farmers and contractors in investing in such feedstock. Nonetheless, the cost, performance and critical aspects related to the harvesting stage are still not properly investigated. In the present study, an ad-hoc test was performed in Spain in order to fulfill this gap. The results support the hypothesis to harvest camelina seeds with the same combine harvester used for cereal harvesting without further investment. Theoretical field capacity (TFC), effective field capacity (EFC), material capacity (MC), and field efficiency (FE) were 4.34 ha h−1 , 4.22 ha h−1 , 4.66 Mg h−1 FM, and 97.24%, respectively. The harvesting cost was estimated in 48.51 € ha−1 . Approximately, the seed loss of 0.057 ± 0.028 Mg ha−1 FM was due to the impact of the combine harvester header and dehiscence of pods, whilst 0.036 ± 0.006 Mg ha−1 FM of seeds were lost due to inefficiency of the threshing system of the combine harvester. Adjustment of the working speed of the combine and the rotation speed of the reel may help to reduce such loss.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/128191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 12
social impact