HF radar systems have the potential to measure the wind direction, in addition to surface currents and wave fields. However, studies on HF radar for wind direction determination are rare in the scientific literature. Starting with the results presented in Saviano et al. (2021), we here expand on the reliability of the multiannual wind direction data retrieved over two periods, from May 2008 to December 2010 and from January to December 2012, by a network of three SeaSonde high-frequency (HF) radars operating in the Gulf of Naples (Central Tyrrhenian Sea, Western Mediterranean Sea). This study focuses on the measurements obtained by each antenna over three range cells along a coast-offshore transect, pointing to any potential geographically dependent measurement. The scarcity of offshore wind measurements requires the use of model-generated data for comparative purposes. The data here used are obtained from the Mediterranean Wind-Wave Model, which provides indications for both wave and wind parameters, and the ERA5@2km wind dataset obtained by dynamically downscaling ERA5 reanalysis. These data are first compared with in situ data and subsequently with HF-retrieved wind direction measurements. The analysis of the overall performance of the HF radar network in the Gulf of Naples confirms that the HF radar wind data show the best agreement when the wind speed exceeds a 5 m/s threshold, ensuring a sufficiently energetic surface wave field to be measured. The results obtained in the study suggest the necessity of wind measurements in offshore areas to validate the HF radar wind measurements and to improve the extraction algorithms. The present work opens up further investigations on the applications of wind data from SeaSonde HF radars as potential monitoring platforms, both in coastal and offshore areas.

HF Radar Wind Direction: Multiannual Analysis Using Model and HF Network

Saviano, Simona;Biancardi, Anastasia Angela;Uttieri, Marco;Zambianchi, Enrico;Cianelli, Daniela
2023-01-01

Abstract

HF radar systems have the potential to measure the wind direction, in addition to surface currents and wave fields. However, studies on HF radar for wind direction determination are rare in the scientific literature. Starting with the results presented in Saviano et al. (2021), we here expand on the reliability of the multiannual wind direction data retrieved over two periods, from May 2008 to December 2010 and from January to December 2012, by a network of three SeaSonde high-frequency (HF) radars operating in the Gulf of Naples (Central Tyrrhenian Sea, Western Mediterranean Sea). This study focuses on the measurements obtained by each antenna over three range cells along a coast-offshore transect, pointing to any potential geographically dependent measurement. The scarcity of offshore wind measurements requires the use of model-generated data for comparative purposes. The data here used are obtained from the Mediterranean Wind-Wave Model, which provides indications for both wave and wind parameters, and the ERA5@2km wind dataset obtained by dynamically downscaling ERA5 reanalysis. These data are first compared with in situ data and subsequently with HF-retrieved wind direction measurements. The analysis of the overall performance of the HF radar network in the Gulf of Naples confirms that the HF radar wind data show the best agreement when the wind speed exceeds a 5 m/s threshold, ensuring a sufficiently energetic surface wave field to be measured. The results obtained in the study suggest the necessity of wind measurements in offshore areas to validate the HF radar wind measurements and to improve the extraction algorithms. The present work opens up further investigations on the applications of wind data from SeaSonde HF radars as potential monitoring platforms, both in coastal and offshore areas.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/127908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact