To obtain explicit understanding of the behavior of dynamical systems, geometrical methods and slow-fast analysis have proved to be highly useful. Such methods are standard for smooth dynamical systems and increasingly used for continuous, non-smooth dynamical systems. However, they are much less used for random dynamical systems, in particular for hybrid models with discrete, random dynamics. Here we propose a geometrical method that works directly with the hybrid system. We illustrate our approach through an application to a hybrid pituitary cell model in which the stochastic dynamics of very few active large-conductance potassium (BK) channels is coupled to a deterministic model of the other ion channels and calcium dynamics. To employ our geometric approach, we exploit the slow-fast structure of the model. The random fast subsystem is analyzed by considering discrete phase planes, corresponding to the discrete number of open BK channels, and stochastic events correspond to jumps between these planes. The evolution within each plane can be understood from nullclines and limit cycles, and the overall dynamics, e.g., whether the model produces a spike or a burst, is determined by the location at which the system jumps from one plane to another. Our approach is generally applicable to other scenarios to study discrete random dynamical systems defined by hybrid stochastic-deterministic models.
Geometric slow-fast analysis of a hybrid pituitary cell model with stochastic ion channel dynamics
Montefusco, F;
2024-01-01
Abstract
To obtain explicit understanding of the behavior of dynamical systems, geometrical methods and slow-fast analysis have proved to be highly useful. Such methods are standard for smooth dynamical systems and increasingly used for continuous, non-smooth dynamical systems. However, they are much less used for random dynamical systems, in particular for hybrid models with discrete, random dynamics. Here we propose a geometrical method that works directly with the hybrid system. We illustrate our approach through an application to a hybrid pituitary cell model in which the stochastic dynamics of very few active large-conductance potassium (BK) channels is coupled to a deterministic model of the other ion channels and calcium dynamics. To employ our geometric approach, we exploit the slow-fast structure of the model. The random fast subsystem is analyzed by considering discrete phase planes, corresponding to the discrete number of open BK channels, and stochastic events correspond to jumps between these planes. The evolution within each plane can be understood from nullclines and limit cycles, and the overall dynamics, e.g., whether the model produces a spike or a burst, is determined by the location at which the system jumps from one plane to another. Our approach is generally applicable to other scenarios to study discrete random dynamical systems defined by hybrid stochastic-deterministic models.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.