The main purpose of this study is to apply a Deep Neural Network (DNN) method to linear systems and to predict in a relatively short time span the ultimate vertical bending moment (VBM) for damaged ships. A Deep Neural Network approach, which is composed of multiple fully connected layers with a Rectified Linear Unit (ReLU) which is a non-linear activation function, has been applied to more than 6000 samples and validated using leave-one-out technique. The ultimate strength has been predicted for a set of completely new damage scenarios of different cross sections, enhancing that the deep neural network method can estimate the residual hull girder strength for a correlated damage index general (DIG). The predicted residual hull girder strength as well as the shift of the neutral axis are validated against Smith’s method-based results.

A Deep Neural Network to Predict the Residual Hull Girder Strength

Di Nardo, Emanuel;Ciaramella, Angelo;
2022-01-01

Abstract

The main purpose of this study is to apply a Deep Neural Network (DNN) method to linear systems and to predict in a relatively short time span the ultimate vertical bending moment (VBM) for damaged ships. A Deep Neural Network approach, which is composed of multiple fully connected layers with a Rectified Linear Unit (ReLU) which is a non-linear activation function, has been applied to more than 6000 samples and validated using leave-one-out technique. The ultimate strength has been predicted for a set of completely new damage scenarios of different cross sections, enhancing that the deep neural network method can estimate the residual hull girder strength for a correlated damage index general (DIG). The predicted residual hull girder strength as well as the shift of the neutral axis are validated against Smith’s method-based results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/122617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact