(1) Background: In this paper, an artificial neural network approach for effective and real-time quantitative microwave breast imaging is proposed. It proposes some numerical analyses for the optimization of the network architecture and the improvement of recovery performance and processing time in the microwave breast imaging framework, which represents a fundamental preliminary step for future diagnostic applications. (2) Methods: The methodological analysis of the proposed approach is based on two main aspects: firstly, the definition and generation of a proper database adopted for the training of the neural networks and, secondly, the design and analysis of different neural network architectures. (3) Results: The methodology was tested in noisy numerical scenarios with different values of SNR showing good robustness against noise. The results seem very promising in comparison with conventional nonlinear inverse scattering approaches from a qualitative as well as a quantitative point of view. (4) Conclusion: The use of quantitative microwave imaging and neural networks can represent a valid alternative to (or completion of) modern conventional medical imaging techniques since it is cheaper, safer, fast, and quantitative, thus suitable to assist medical decisions.

An End-to-End Deep Learning Approach for Quantitative Microwave Breast Imaging in Real-Time Applications

Ambrosanio M.;Franceschini S.;Pascazio V.;Baselice F.
2022

Abstract

(1) Background: In this paper, an artificial neural network approach for effective and real-time quantitative microwave breast imaging is proposed. It proposes some numerical analyses for the optimization of the network architecture and the improvement of recovery performance and processing time in the microwave breast imaging framework, which represents a fundamental preliminary step for future diagnostic applications. (2) Methods: The methodological analysis of the proposed approach is based on two main aspects: firstly, the definition and generation of a proper database adopted for the training of the neural networks and, secondly, the design and analysis of different neural network architectures. (3) Results: The methodology was tested in noisy numerical scenarios with different values of SNR showing good robustness against noise. The results seem very promising in comparison with conventional nonlinear inverse scattering approaches from a qualitative as well as a quantitative point of view. (4) Conclusion: The use of quantitative microwave imaging and neural networks can represent a valid alternative to (or completion of) modern conventional medical imaging techniques since it is cheaper, safer, fast, and quantitative, thus suitable to assist medical decisions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/111257
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact