The acquisition of bathymetric data in shallower waters is difficult to attain using traditional survey methods because the areas to investigate may not be accessible to hydrographic vessels, due to the risk of grounding. For this reason, the use of satellite detection of depth data (satellite-derived bathymetry, SDB) constitutes a particularly useful and also economically advantageous alternative. In fact, this approach based on analytical modelling of light penetration through the water column in different multispectral bands allows to cover a big area against relatively low investment in time and resources. Particularly, the empirical method named band ratio method (BRM) is based on the degrees of absorption at different bands. The accuracy of the SDB is not comparable with that of traditional surveys, but we can certainly improve it by choosing satellite images with high geometric resolution. This article aims to investigate BRM applied to high geometric resolution images, IKONOS-2, concerning the Bay of Pozzuoli (Italy), and improve the accuracy of results performing the determination of the relation between band ratio and depth. Two non-linear functions such as the exponential function and the 3rd degree polynomial (3DP) are proposed, instead of regression line, to approximate the relationship between the values of the reflectance ratios and the true depth values collected in measured points. Those are derived from an Electronic Navigational Chart produced by the Italian Hydrographic Office. The results demonstrate that the adopted approach allows to enhance the accuracy of the SDB, specifically, 3DP supplies the most performing bathymetric model derived by multispectral IKONOS-2 images.
Bathymetry from satellite images: a proposal for adapting the band ratio approach to IKONOS data
Figliomeni F. G.;Parente C.
2022-01-01
Abstract
The acquisition of bathymetric data in shallower waters is difficult to attain using traditional survey methods because the areas to investigate may not be accessible to hydrographic vessels, due to the risk of grounding. For this reason, the use of satellite detection of depth data (satellite-derived bathymetry, SDB) constitutes a particularly useful and also economically advantageous alternative. In fact, this approach based on analytical modelling of light penetration through the water column in different multispectral bands allows to cover a big area against relatively low investment in time and resources. Particularly, the empirical method named band ratio method (BRM) is based on the degrees of absorption at different bands. The accuracy of the SDB is not comparable with that of traditional surveys, but we can certainly improve it by choosing satellite images with high geometric resolution. This article aims to investigate BRM applied to high geometric resolution images, IKONOS-2, concerning the Bay of Pozzuoli (Italy), and improve the accuracy of results performing the determination of the relation between band ratio and depth. Two non-linear functions such as the exponential function and the 3rd degree polynomial (3DP) are proposed, instead of regression line, to approximate the relationship between the values of the reflectance ratios and the true depth values collected in measured points. Those are derived from an Electronic Navigational Chart produced by the Italian Hydrographic Office. The results demonstrate that the adopted approach allows to enhance the accuracy of the SDB, specifically, 3DP supplies the most performing bathymetric model derived by multispectral IKONOS-2 images.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.