: In recent years, the performance of free-and-open-source software (FOSS) for image processing has significantly increased. This trend, as well as technological advancements in the unmanned aerial vehicle (UAV) industry, have opened blue skies for both researchers and surveyors. In this study, we aimed to assess the quality of the sparse point cloud obtained with a consumer UAV and a FOSS. To achieve this goal, we also process the same image dataset with a commercial software package using its results as a term of comparison. Various analyses were conducted, such as the image residuals analysis, the statistical analysis of GCPs and CPs errors, the relative accuracy assessment, and the Cloud−to−Cloud distance comparison. A support survey was conducted to measure 16 markers identified on the object. In particular, 12 of these were used as ground control points to scale the 3D model, while the remaining 4 were used as check points to assess the quality of the scaling procedure by examining the residuals. Results indicate that the sparse clouds obtained are comparable. MicMac® has mean image residuals equal to 0.770 pixels while for Metashape® is 0.735 pixels. In addition, the 3D errors on control points are similar: the mean 3D error for MicMac® is equal to 0.037 m with a standard deviation of 0.017 m, whereas for Metashape®, it is 0.031 m with a standard deviation equal to 0.015 m. The present work represents a preliminary study: a comparison between software packages is something hard to achieve, given the secrecy of the commercial software and the theoretical differences between the approaches. This case study analyzes an object with extremely complex geometry; it is placed in an urban canyon where the GNSS support can not be exploited. In addition, the scenario changes continuously due to the vehicular traffic

Structure-from-Motion 3D Reconstruction of the Historical Overpass Ponte della Cerra: A Comparison between MicMac® Open Source Software and Metashape®

Cutugno, Matteo
;
Robustelli, Umberto;Pugliano, Giovanni
2022-01-01

Abstract

: In recent years, the performance of free-and-open-source software (FOSS) for image processing has significantly increased. This trend, as well as technological advancements in the unmanned aerial vehicle (UAV) industry, have opened blue skies for both researchers and surveyors. In this study, we aimed to assess the quality of the sparse point cloud obtained with a consumer UAV and a FOSS. To achieve this goal, we also process the same image dataset with a commercial software package using its results as a term of comparison. Various analyses were conducted, such as the image residuals analysis, the statistical analysis of GCPs and CPs errors, the relative accuracy assessment, and the Cloud−to−Cloud distance comparison. A support survey was conducted to measure 16 markers identified on the object. In particular, 12 of these were used as ground control points to scale the 3D model, while the remaining 4 were used as check points to assess the quality of the scaling procedure by examining the residuals. Results indicate that the sparse clouds obtained are comparable. MicMac® has mean image residuals equal to 0.770 pixels while for Metashape® is 0.735 pixels. In addition, the 3D errors on control points are similar: the mean 3D error for MicMac® is equal to 0.037 m with a standard deviation of 0.017 m, whereas for Metashape®, it is 0.031 m with a standard deviation equal to 0.015 m. The present work represents a preliminary study: a comparison between software packages is something hard to achieve, given the secrecy of the commercial software and the theoretical differences between the approaches. This case study analyzes an object with extremely complex geometry; it is placed in an urban canyon where the GNSS support can not be exploited. In addition, the scenario changes continuously due to the vehicular traffic
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/108676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact