The intestinal microbiota is a crucial regulator of human health and disease because of its interactions with the immune system. Tobacco smoke also influences the human ecosystem with implications for disease development. This systematic review aims to analyze the available evidence, until June 2021, on the relationship between traditional and/or electronic cigarette smoking and intestinal microbiota in healthy human adults. Of the 2645 articles published in PubMed, Scopus, and Web of Science, 13 were included in the review. Despite differences in design, quality, and participants’ characteristics, most of the studies reported a reduction in bacterial species diversity, and decreased variability indices in smokers’ fecal samples. At the phylum or genus level, the results are very mixed on bacterial abundance both in smokers and non-smokers with two exceptions. Prevotella spp. appears significantly increased in smokers and former smokers but not in electronic cigarette users, while Proteobacteria showed a progressive increase in Desulfovibrio with the number of pack-years of cigarette (p = 0.001) and an increase in Alphaproteobacteria (p = 0.04) in current versus never smokers. This attempt to systematically characterize the effects of tobacco smoking on the composition of gut microbiota gives new perspectives on future research in smoking cessation and on a new possible use of probiotics to contrast smoke-related dysbiosis.

Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review

Galle F.
Writing – Original Draft Preparation
;
Liguori G.
Writing – Review & Editing
;
2022-01-01

Abstract

The intestinal microbiota is a crucial regulator of human health and disease because of its interactions with the immune system. Tobacco smoke also influences the human ecosystem with implications for disease development. This systematic review aims to analyze the available evidence, until June 2021, on the relationship between traditional and/or electronic cigarette smoking and intestinal microbiota in healthy human adults. Of the 2645 articles published in PubMed, Scopus, and Web of Science, 13 were included in the review. Despite differences in design, quality, and participants’ characteristics, most of the studies reported a reduction in bacterial species diversity, and decreased variability indices in smokers’ fecal samples. At the phylum or genus level, the results are very mixed on bacterial abundance both in smokers and non-smokers with two exceptions. Prevotella spp. appears significantly increased in smokers and former smokers but not in electronic cigarette users, while Proteobacteria showed a progressive increase in Desulfovibrio with the number of pack-years of cigarette (p = 0.001) and an increase in Alphaproteobacteria (p = 0.04) in current versus never smokers. This attempt to systematically characterize the effects of tobacco smoking on the composition of gut microbiota gives new perspectives on future research in smoking cessation and on a new possible use of probiotics to contrast smoke-related dysbiosis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/105996
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 15
social impact