In this study, the scattering mechanisms associated to internal waves (IWs) are investigated at L-band. IWs represent key geophysical factors for sea-air heat exchange and play a paramount role in the biological primary production and in the understanding of the evolution of climate ecosystem. In addition, a better understanding of IWs microwave scattering mechanisms can improve the modeling capability and, therefore, can boost the development on advanced synthetic aperture radar (SAR)-based added-value products to mitigate the risk for offshore drilling operations and aquaculture activities associated to IWs. The analysis of L-band multi-polarization SAR scattering of IWs under the influence of surface current straining is performed using a meaningful full-polarimetric Advanced Land Observing Satellite Phased Array type L-band 1 SAR data set collected over IWs observed under different imaging and wind conditions. Time and space co-located ancillary information is also available. Experimental results demonstrate that the non-polarized scattering mechanisms constitute a significant contribution to the total IW backscattering, especially in the case of surface current gradients owing to IWs (about 48–57%). It is also found that the non-polarized scattering contribution associated to IW concentrates along the wave crests, i.e. it is at least 60% larger than the one observed along the wave troughs. In addition, considering the IW traveling directions relative to that of the wind, the non-polarized scattering contribution associated to IWs is more remarkable at upwind direction while it is less significant at down/crosswind directions. The non-polarized scattering mechanisms also calls for a modulation induced by IWs which is much more significant,i.e. at least three times, that the one that characterizes the polarized scattering mechanism.

Multi-polarization radar backscatter signatures of internal waves at L-band

de Macedo C. R.;Buono A.;Migliaccio M.
2022-01-01

Abstract

In this study, the scattering mechanisms associated to internal waves (IWs) are investigated at L-band. IWs represent key geophysical factors for sea-air heat exchange and play a paramount role in the biological primary production and in the understanding of the evolution of climate ecosystem. In addition, a better understanding of IWs microwave scattering mechanisms can improve the modeling capability and, therefore, can boost the development on advanced synthetic aperture radar (SAR)-based added-value products to mitigate the risk for offshore drilling operations and aquaculture activities associated to IWs. The analysis of L-band multi-polarization SAR scattering of IWs under the influence of surface current straining is performed using a meaningful full-polarimetric Advanced Land Observing Satellite Phased Array type L-band 1 SAR data set collected over IWs observed under different imaging and wind conditions. Time and space co-located ancillary information is also available. Experimental results demonstrate that the non-polarized scattering mechanisms constitute a significant contribution to the total IW backscattering, especially in the case of surface current gradients owing to IWs (about 48–57%). It is also found that the non-polarized scattering contribution associated to IW concentrates along the wave crests, i.e. it is at least 60% larger than the one observed along the wave troughs. In addition, considering the IW traveling directions relative to that of the wind, the non-polarized scattering contribution associated to IWs is more remarkable at upwind direction while it is less significant at down/crosswind directions. The non-polarized scattering mechanisms also calls for a modulation induced by IWs which is much more significant,i.e. at least three times, that the one that characterizes the polarized scattering mechanism.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/104833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact