The aluminum Bayer production process is the most diffused process in the world, but it creates a high amount of basic waste material known as red mud (RM). The use of RM as a precursor of alkali-activated materials is one of the best opportunities for both the ecosystem and the economy. In the present work, mortar samples were obtained by alkali activation of RM with various percentages of blast-furnace slag (BFS) and inert construction and demolition sands. This process creates samples that have a low environmental impact and that can be used as an alternative in the construction industry to cement materials or ceramic ones. The development of these new materials could also represent a way to reduce the CO2 emissions linked to cement and ceramic brick production. In the present study, cubic 40 mm samples reported very interesting values in compressive strength, with a maximum of about 70 MPa for low environmental impact mortars. With such a material, it is possible to create solid bricks for structural use and concrete tiles for road paving or use it for other purposes. Mortar specimens were prepared and characterized, and an LCA analysis with a “cradle-to-gate” approach was carried out for a comparison of the environmental impact of the studied mortars with other materials currently marketed.

Alkali-Activated Red Mud and Construction and Demolition Waste-Based Components: Characterization and Environmental Assessment

Occhicone A.;Ferone C.
2022-01-01

Abstract

The aluminum Bayer production process is the most diffused process in the world, but it creates a high amount of basic waste material known as red mud (RM). The use of RM as a precursor of alkali-activated materials is one of the best opportunities for both the ecosystem and the economy. In the present work, mortar samples were obtained by alkali activation of RM with various percentages of blast-furnace slag (BFS) and inert construction and demolition sands. This process creates samples that have a low environmental impact and that can be used as an alternative in the construction industry to cement materials or ceramic ones. The development of these new materials could also represent a way to reduce the CO2 emissions linked to cement and ceramic brick production. In the present study, cubic 40 mm samples reported very interesting values in compressive strength, with a maximum of about 70 MPa for low environmental impact mortars. With such a material, it is possible to create solid bricks for structural use and concrete tiles for road paving or use it for other purposes. Mortar specimens were prepared and characterized, and an LCA analysis with a “cradle-to-gate” approach was carried out for a comparison of the environmental impact of the studied mortars with other materials currently marketed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/102413
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact