In this study, multi-polarization Synthetic Aperture Radar (SAR) features extracted from Sentinel-1 C-band SAR measurements are used to identify wildfires and to classify burn severity. SAR features include co-and cross-polarized normalized radar cross sections and the total backscattered power, namely the SPAN. The test case refers to the wildfire that affected about 10 km2 in Tuscany region (Central Italy) during September 2018. Experiments, undertaken on actual SAR data, collected before and after the considered wildfire, demonstrate the soundness of the proposed approach and the different sensitivity of the multi-polarization backscattering features to burn severity.

Multi-Polarization Methods to Detect and Classify Burned Areas using Sentinel-1 Sar Data

Ferrentino E.;Nunziata F.;Buono A.;Sarti M.;Migliaccio M.
2021

Abstract

In this study, multi-polarization Synthetic Aperture Radar (SAR) features extracted from Sentinel-1 C-band SAR measurements are used to identify wildfires and to classify burn severity. SAR features include co-and cross-polarized normalized radar cross sections and the total backscattered power, namely the SPAN. The test case refers to the wildfire that affected about 10 km2 in Tuscany region (Central Italy) during September 2018. Experiments, undertaken on actual SAR data, collected before and after the considered wildfire, demonstrate the soundness of the proposed approach and the different sensitivity of the multi-polarization backscattering features to burn severity.
978-1-6654-4135-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/101138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact