Let E be a Banach space with a supremum type norm induced by a collection of functionals L ⊂ X∗where X is a reflexive Banach space. Familiar spaces of this type are BMO, BV, C0,α(0 < α < 1), Lq,∞, for q > 1. For most of these spaces E, the predual E∗ exists and can be defined by atomic decomposition of its elements. Another typical result, when it is possible to define a rich vanishing subspace E0⊂ E is the "two star theorem ", namely (E0)∗ = E∗. This fails for E = BV and E =C0,1= Lip.
Titolo: | Duality and o-O structure in non reflexive banach spaces | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Handle: | http://hdl.handle.net/11367/100437 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.