
Limit state analysis of RC structures

Nunziante Valoroso1, Francesco Marmo2, Salvatore Sessa3

1Dipartimento per le Tecnologie, Università di Napoli Parthenope, Italy
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E-mail: f.marmo@unina.it

3Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Italy

E-mail: sal.sessa@gmail.com

Keywords: Reinforced concrete, limit state, pushover analysis.

SUMMARY. A semi-analytical multi-scale approach is presented to introduce steel reinforcement

into shear walls that allows one to carry out nonlinear analyses of full-scale reinforced concrete

structures with reduced computational effort.

1 INTRODUCTION

The inelastic static pushover analysis has become a popular tool for evaluating the seismic capac-

ity of structures. It is able of predicting the seismic force and deformation demands by accounting

in an approximate manner for the inelastic redistribution of internal forces. Though approximate in

nature and based on static loading, the pushover analysis can provide many significant insights into

the structural behaviour and also put forward the design weaknesses that may be hidden in elastic

analyses. The main features of the conventional pushover analysis are well described in [1], where

are also emphasized limitations and possible causes that may produce loss of accuracy.

A basic prerequisite for successful applications of the method is an adequate knowledge of the

inelastic behaviour of structural elements. This is particularly true for structures containing shear

walls that, if not properly described, may significantly affect the results of the analysis. In this work

we show how, under appropriate hypotheses, one can introduce steel reinforcement into shear walls

by appealing to a semi-analytical multi-scale approach. In particular, reinforcements are taken into

account using the usual conventional material behaviour, i.e. the the so-called parabolic-rectangular

stress block for concrete and ideal elastic-plastic for steel as of Eurocode 2, and a fiber-free integra-

tion [2], that provides the exact solution for stress resultants over the cross section of a beam.

A representative numerical example is shown illustrating the capabilities of the proposed ap-

proach that, on one hand, allows one to carry out accurate nonlinear analyses of full-scale reinforced

concrete structures with relatively reduced computational effort and, on the other side, prevents from

meaningless results that can be arrived at when shear walls are modeled as beams.

2 MATERIALS

Assumptions and material properties adopted in the following are those generally used for the

ultimate limit state analysis of RC structures. Our aim here is to avoid use of material parameters

that may be unavailable in professional practice and make reference to building codes prescriptions,

which require only basic material data.
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With this motivation, the nonlinear behavior of concrete is described by the usual parabolic-

rectangular stress block, i.e.
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where the tensile strength is neglected, σco is the peak compressive stress of concrete and εco is the

corresponding strain. Reinforcement bars are assumed to behave according to a bilinear stress-strain

relationship both in traction and compression:
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where E is the elastic modulus, H is the hardening modulus, εy and σy = Eεy are the yield strain

and stress while the subscripts c and t stand for compression and tensile, respectively.

The ultimate limit state is assumed to be attained when any of the two materials reaches a limit

strain which is set to εcu for concrete in compression and to εsuc and εsut for steel reinforcements.

3 CROSS SECTIONAL BEAM ANALYSIS

A Cartesian coordinate system with origin O and axes x and y lying on the plane of the cross

section is introduced. Axis z is orthogonal to the plane x − y and lies along the length of the beam.

Each point of the section is defined by its in-plane position vector r. Reinforcing bars are defined as

concentrated areas Asj of position rsj, j = 1...ns, ns being the number of re-bars. Euler-Bernoulli

hypothesis and perfect bond between steel bars and concrete are assumed; strains in concrete and

steel rebars are therefore provided by the same linear function ε given by:

ε(r) = ε + g · r (1)

ε being the axial strain at origin O and g the strain gradient. Stress resultants are evaluated by

integrating the axial stress σc(ε) over the concrete part Ω of the section to get the axial forces N and

the bending moment vectors M⊥:

Nc =

∫

Ω

σc[ε(r)]dΩ; M⊥

c = (−Mcy , Mcx)t =

∫

Ω

σc[ε(r)]rdΩ (2)

Ns =

nb
∑

j=1

σs[ε(rsj)]dΩ; M⊥

s = (−Msy, Msx)t =

nb
∑

j=1

σs[ε(rsj)]rdΩ (3)

where subscripts c and s stand for concrete and steel, respectively. Stress resultants of the entire RC

section are obtained from the superposition of the two above contributions.
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4 RC SHEAR WALL

Main goal of this work is to show the capabilities of a shell element accounting for the presence of

reinforcement bars. In particular, the 1D stress-strain relationships for steel and concrete described

in the previous section are introduced in the direction of re-bars; this requires in turn to establish a

relationship between strain and stress measures employed in beam and shells as well as that between

elements dofs. The implemented shell element is a four-node flat quadrilateral obtaind by merging a

plate bending element and a plane stress membrane. In particular, for the plate bending components

a discrete Kirchhoff-based formulation is adopted; here the transverse shear energy is neglected

altogether and the thin plate constraint is introduced in discrete form along the element edges to

enforce the zero-shear strain condition [3]. As for the plane stress membrane, in-plane rotational

degrees of freedom [4] are included in addition to the usual in-plane displacements; when combined

with the plate bending part this provides a shell element possessing the 6 engineering degrees of

freedom at the corner nodes, which allows to connect the shell with three-dimensional beam elements

and prevents from singularity in planar configurations.

4.1 Numerical example

The numerical example concerns a planar symmetric RC structure consisting of a shear wall

connected to two frames, see also Figure 1. The concrete material properties are Ec = 70 GPa,

ν = 0 in the 1-direction (horizontal) while in the direction of the reinforcing bars (vertical) the

parabola-rectangle stress block relationship is assumed with σco = 40.0MPa and εc0 = 0.002.

The reinforcing steel constitution is ideal elastic-plastic with material properties E = 210 GPa and

εy = 0.002. Reinforcements are made with 18 mm rebars that are uniformly distributed along the

sides of the cross section with 20 cm spacing. Horizontal beams are subject to a uniformly distributed

load of 20N/mm that is incremented up to a final value of 200N/mm.

The shear wall is modeled either with the developed RC shell elements or using beam elements;

in this last case rigid-end offset are added to the horizontal beams in order to account for the width

of the shear wall. Figure 1 shows the deformed shapes and the limit states of the structure obtained

in the two cases. The significant difference between the computed solutions is a direct consequence

of the different kinematic models used to describe the shear wall. In particular, when using a beam

element to represent the shear wall this last one is only subject to a normal force and does not

experience stress concentrations. Basically, this occurs because of the symmetry of the geometrical

model, that has the effect of rendering the horizontal beams perfectly buit-in on the symmetry axis;

due to the rigid-end offsets the beam lengths and the bending moments are also reduced and no

plastic hinge appears. On the contrary, when using shell elements for modelling the shear wall, the

stress concentrations occurring in the vicinity of the wall-beam connections are correctly captured.

This gives also rise to plastic hinges in this region which change the boundary conditions of the

beams from built-in to simply supported. Accordingly, for increasing vertical load plastic hinges

do appear also in the midspan region of beams that are responsible of the significant change of the

deformed shapes and of the mechanisms depicted in Figure 1.

5 CONCLUSIONS

We have implemented a flat shell element for the analysis of RC structures containing shear

walls. The proposed model makes use of 1D nonlinear constitutive laws for concrete; even with this

limitation the benefits of the present formulation are clearly demonstrated by a numerical example

that shows how neglecting the two-dimensional nature of a shear wall can lead to numerical results

affected by gross inaccuracies.
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Figure 1: Mixed wall–frame structure. Deformed shape and Limit states.
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