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Abstract: The paper deals with the problem of improving the maximum sample rate of 

analog-to-digital converters (ADCs) included in low cost wireless sensing nodes. To this 

aim, the authors propose an efficient acquisition strategy based on the combined use of  

high-resolution time-basis and compressive sampling. In particular, the high-resolution  

time-basis is adopted to provide a proper sequence of random sampling instants, and a 

suitable software procedure, based on compressive sampling approach, is exploited to 

reconstruct the signal of interest from the acquired samples. Thanks to the proposed strategy, 

the effective sample rate of the reconstructed signal can be as high as the frequency of the 

considered time-basis, thus significantly improving the inherent ADC sample rate. Several 

tests are carried out in simulated and real conditions to assess the performance of the 

proposed acquisition strategy in terms of reconstruction error. In particular, the results 

obtained in experimental tests with ADC included in actual 8- and 32-bits microcontrollers 

highlight the possibility of achieving effective sample rate up to 50 times higher than that of 

the original ADC sample rate. 
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1. Introduction 

In recent years, embedded systems (such as microcontrollers, field programmable gated arrays, digital 

signal processors and so on) have been playing a fundamental role in metrological applications. The 

availability of integrated systems capable of digitizing, processing and transmitting measurement results 

offers the opportunity of realizing nodes for distributed and/or portable measurement systems 

characterized by reduced costs and good performance. Typical application examples are smart meters 

for energy billing or analysis of electrical power quality [1–4], monitoring of environmental quantities 

of interest [5–8], control of complex production process [9–11]. 

Architectures based on successive approximation registers are usually chosen for the  

Data Acquisition Section (DAS), mainly based on the Analog to Digital Converter (ADC) embedded in 

the measurements nodes, due to their straightforward implementation and a nominal vertical resolution 

that is suitable for most of the considered application. Nevertheless, some specific solutions for  

band-pass signals [12–14] and some dedicated solutions exploiting more performing ADCs (ΣΔ or flash 

converters) are also available on the market [15]. 

The most significant parameters commonly used for characterizing and determining the performance 

of the DAS are: 

• Nominal vertical resolution: usually expressed in bits, it defines how many distinct output 

codes the DAS can produce; depending on the specific architecture of the ADC, typical 

resolution varies between 10 and 14 bits; 

• Maximum sample rate: it defines the capability of the DAS of rapidly sampling and converting 

the input signal and directly determines the maximum spectral component that can be 

alias-free sampled. Typical actual values for low cost microcontrollers range from few tens of 

kilohertz up to five MHz; 

• Memory depth: combined with the sample rate, it determines the maximum observation 

interval the microcontroller can acquire for successive processing. Values from few kilobytes 

up to some megabytes are usually found; 

• Input bandwidth: determines the maximum frequency of spectral components that the ADC 

can receive as input without significant distortion; to assure alias-free digitization of the input 

signal, it is usually set no higher than half maximum sample rate, even though some solutions 

dedicated to digital down conversion provide larger bandwidth [16]. 

For distributed measurement systems consisting of distributed acquisition nodes and a central 

computing unit that processes measurement data, improving the performance of the embedded DAS, in 

terms of sample rate enhancement, can be crucial for the improvement of the whole measurement system. 

To this aim, the paper presents a novel acquisition strategy, based on compressive sampling (CS), which 

permits to increase the maximum sample rate of DAS integrated in low-cost microcontrollers. 
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CS is a recent and attractive sampling approach capable of assuring reliable reconstruction of signals 

of interest from a very reduced number of acquired samples, provided that some conditions about the 

signal and sampling scheme are met [17]. Some papers recently focused their attention on the possibility 

of exploiting CS to enhance the performance of ADC in terms of sample rate. In particular, in [18] CS 

is used to extend the traditional equivalent time sampling (ETS) scheme in order to reconstruct the input 

signal with a higher time resolution. However, a number of periods of the input signal much higher than 

those successively reconstructed are involved, which poses severe constraints on the stability of the  

time-base. Such problem has been solved for random sampling CS-based ADC in [19] through an ad-hoc 

new circuit. An alternative is represented by CS-based ADCs exploiting random demodulation [20], 

which have been shown to have good performance for most measurement applications [21]. In particular, 

a significant improvement in terms of sample rate has been obtained, though at the expense of 

architectural complexity, due to the presence of the analog mixing of the input signal with a  

pseudo-random sequence. 

Differently from the above-mentioned solutions, the method proposed hereinafter does not require 

any hardware modification (such as external clock circuits and/or analog mixing stages) to increase the 

sample rate and turns out to be the optimal solution for the majority of already available ADCs integrated 

in embedded systems. The proposed acquisition strategy permits, in fact, to achieve a higher time 

resolution when digitizing a signal included in the ADC bandwidth in real-time, by combining the 

already available hardware section (constituted by the traditional ADC and the high-resolution  

time-basis) with a proper software procedure, which provides a suitable random sequence of sampling 

instants and reconstructs the signal of interest according to the CS theory. 

2. Problem Statement 

Taking advantage of some attractive features of the CS theory, a new method is proposed in the 

following section with the aim of improving the nominal sample rate of ADCs. Although the proposed 

method is general, it proves particularly advantageous when applied to ADC modules included in low 

cost microcontrollers (MCs). The availability of a high-resolution time-basis (such as that generated 

from the fundamental clock frequency for MCs) allows, in fact, finely defining a suitable random 

sequence of the sampling instants capable of assuring the reliable successive signal reconstruction. For 

the sake of clarity, the key idea underlying the method is described and compared both to the traditional 

and compressive sampling approach. 

2.1. Traditional Sampling Approach 

In Figure 1 the traditional sampling approach, adopted by the majority of ADCs, is shown. The ADC 

operates at its highest sampling rate and input signal samples are uniformly taken with a sampling period 

equal to Tconv, which is the time interval required by the ADC to digitize (i.e., to sample and convert) a 

single sample. Alias-free sampling can be assured on a signal whose maximum spectral content is lower 

than 1/(2Tconv). It is useful to highlight that in the case of low-cost microcontrollers, the limited memory 

depth (usually shorter than 10,000 samples) permits to save only short-time records of the input signal. 
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Figure 1. Traditional approach for signal sampling; samples of the input signal of interest 

are uniformly digitized with constant period equal to Tconv. 

 

2.2. CS-Based Sampling Approach 

The authors recently faced the considered problem thanks to a suitable sampling approach based on 

CS [22–24]. As shown in Figure 2, if the samples (indicated by black dots) are randomly acquired 

throughout the observation interval, the signal of interest can accurately be reconstructed (samples 

marked by red dots) as it had been continuously digitized with a sampling period equal to Tconv. 

It is worth noting that the desired reconstruction is achieved, starting from a very limited number of 

random signal samples. It was shown that accurate reconstruction can be gained, with a compression 

ratio up to 98% for multicomponent signals (i.e., 10,000 samples input signals were recovered starting 

from 200 acquired random samples). 

Figure 2. Sampling strategy based on CS; only few samples are randomly digitized from 

which the input signal can be reconstructed with constant sampling period equal to Tconv. 

 

2.3. Proposed Sample Rate Improvement 

A new method (in the following referred to as new acquisition strategy) based on CS has been defined 

and implemented for increasing the effective sample rate of embedded DAS. The availability of a 

suitable time-basis allows finely setting the random sampling instants (i.e., the time instants the ADC 

starts to convert a single sample, which are marked as black dots in Figure 3), with a time resolution 

equal to Tc. Even though the conversion of a single sample takes a time Tconv greater than Tc (Tconv = 5Tc 

in the example shown in Figure 3), the proposed approach assures that the input signal will finally be 

reconstructed (red dots) at an effective sample rate equal to 1/Tc. As it can be expected, the only 
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constraint is that the time difference between two successive actual sampling instants should be greater 

than Tconv. 

Figure 3. Proposed acquisition strategy based on CS; thanks to the availability of a suitable 

time-basis, the input signal can be reconstructed with constant sampling period equal to  

Tc < Tconv. 

 

3. Proposed Sampling Approach 

To improve the sample rate of ADC in low-cost embedded systems, the traditional hardware for 

analog-to-digital conversion has been complemented with a proper digital signal processing mandated 

to generate the random sequence of sampling instants and reconstruct the signal of interest from the 

acquired samples (Figure 4). In particular, the sequence of the random sampling instants is determined 

as a multiple of a high-resolution time-basis, Tc, and exploited to control the start of conversion (SOC) 

signal of the ADC. The sequence of considered instants and the corresponding samples (digitized at 

lower rate, equal to 1/Tconv, by the ADC) are given as input to the CS-based algorithm for the successive 

signal reconstruction, with a time resolution equal to that of the adopted time-basis. Specific details 

about the determination of the random sampling instants along with some guidelines for the 

reconstruction algorithm are given in the following. 

Figure 4. Block diagram of proposed solution for improving ADC sample rate. 

 

3.1. Sampling Instants Determination 

The first step of the new acquisition strategy is the determination of the actual sampling instants. 

According to the random sampling approach [25], the sampling instants ti are randomly chosen 
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throughout the considered observation interval Tw equal to n times Tc. The key idea underlying the 

proposed sampling strategy is that the considered instants can be expressed as an integer multiple of the 

high-resolution time-basis Tc: ݐ௜ = ݇௜ ௖ܶ, ݇௜ ∈ ሾ0, ݊ − 1ሿ ܽ݊݀ ݅ = 1, . . , ݉ (1)

This way, the final signal reconstruction will be obtained with the same time resolution, thus granting 

a suitable enhancement of the nominal ADC sample rate. In order to assure proper operations of the  

CS-based ADC, the sampling instants ti have to satisfy the following expression (Figure 3) ݐ௜ = ௜ିଵݐ + ௖ܶ௢௡௩ + ௥ܶ௔௡ௗ (2)

where Trand is the random interval between the end of a conversion and the start of the successive one; 

the considered constraint assures that no new conversion will start until the pending one is over. 

Moreover, a specific software procedure has been implemented in order to assure the generation of a 

pseudo-random sequence of multiples ki capable of assuring the full coverage of the observation with a 

suitable grade of randomness. In particular, let fr be the value of the ratio between Tconv and Tc; the 

pseudo-random sequence generator has to assure the determination of m sampling instants within the 

interval from 0 up to nTc, each of which far at least frTc from the successive one. To this aim, the 

procedure enlists the following steps: 

1. Evaluation of a suitable acceptance threshold tsh, equal to m/n (only m sampling instants among n 

possible values have to be determined) in the first iteration; 

2. Current sampling instant index ki is initially equal to 0; 

3. A pseudo-random number is generated according to uniform random distribution within the 

interval from 0 up to 1; 

4. If the obtained pseudo-random number is lower than the acceptance threshold, then ki is retained 

in sampling sequence and its value is updated by adding fr; 

5. If the obtained pseudo-random number is greater than the acceptance threshold, then ki is dropped 

and its value is incremented by one; 

6. If the number of sampling instants included in the sequence is lower than m and ki is lower than 

n−1 return to step 3; 

7. If ki is not lower than n but the sampling instants sequence is not yet full, a new acceptance 

threshold has to be calculated; this is particularly likely when the value mfr is close to n. To assure 

a fast convergence of the procedure, the authors adopted a threshold increment of 20%, i.e., the 

new value of tsh is 1.2 times the old tsh value; once updated the tsh value, return to  

step 2; 

8. If the number of sampling instants included in the sequence is equal to m and ki value is lower than 

n−1, the sampling instants sequence is complete and can be adopted to acquire the samples of the 

input signal. 

With regard to Tconv, since it is generated from the same fundamental clock, it usually is a multiple of 

the adopted time-basis; if this is not the case, the first multiple of Tc immediately greater than Tconv is 

used, thus granting that condition (2) always holds. 
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According to the CS approach [26], the relation between the sequence of acquired samples ࢟ ∈ ℝ୫ 

and the input signal of interest ࢞ ∈ ℝ୬ can be expressed as ࢟ = ઴࢞ (3)

where ઴ ∈ ℝܖܠܕ is the so-called sampling matrix. The values ki turn out to be the indexes of the columns 

of the random sampling matrix Φ containing non-null entries, whose value is equal to one. For the sake 

of the clarity, let us suppose to be interested in recovering an 8-samples input signal x from 3 samples y 

acquired in time domain. Assuming that Tconv lasts 2Tc, the equations system (3) can be rewritten as: 

቎(2)ݕ(1)ݕ(0)ݕ቏ = ൥1 0 0 0 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 0 0 1൩ ∗ ێێێۏ
ۑۑۑے(7)ݔ(6)ݔ…(1)ݔ(0)ݔۍ

ې = ቎(7)ݔ(4)ݔ(0)ݔ቏ (4)

3.2. Sensing Matrix Determination 

Being usually ݉ ≪ ݊ (i.e., the number of equations lower than that of the unknowns), the problem of 

recovering x from the acquired samples through the equations system (3) results ill-posed [27] and 

cannot be solved via traditional approaches based on least squares minimization. The problem can, 

fortunately, be bypassed if a similar system can be written in the form ࢟ = (5) ࢌۯ

where ۯ ∈ ℝܖܠܕ is the so-called sensing matrix and ࢌ ∈ ℝܖ is a sparse vector. A vector is said to be  

S-sparse if only S of its components are (significantly) greater than zero. Expressing the signal of interest 

in terms of its sparse representation turns out to be mandatory; to this aim, a suitable orthonormal basis શ has to be found, according to ࢞ = શ(6) ࢌ

With reference to the measurement applications considered in Section I, most of the desired signals 

are characterized by sparse representations in the frequency domain. This way, the Fourier basis has 

been chosen and the corresponding matrix Ψ, whose entries are defined as ߰௜,௣ = 1√݊ ݁௝ଶగ௡ ௜∙௣ ∀݅, ݌ ∈ ሾ0, . . , ݊ − 1ሿ (7)

has been adopted as transformation matrix. By comparing Equations (3) and (6), the sensing matrix can 

be expressed, ۯ = ઴શ (8)

Thanks to the specific choice of the sampling matrix, the matrix A can be generated as a submatrix 

of ૐ, thus reducing the computational burden of the method, since A doesn’t have to be calculated from 

actual multiplications. It is, in fact, evaluated as the rows of the matrix ૐ, whose indexes match those 

the sampling instants ki, thus granting its possible implementation also on devices characterized by 

reduced memory depth. With reference to the sampling matrix in Equation (4), the corresponding sensing 

matrix is given by: 
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ۯ =
ێێۏ
ێێێ
ۍ 1√8 1√8 … 1√81√8 1√8 ݁௝ଶగ଼ସ … 1√8 ݁௝ଶగ଼ଶ଼1√8 1√݊ ݁௝ଶగ଼଻ … 1√8 ݁௝ଶగ଼ସଽۑۑے

ۑۑۑ
ې
 (9)

3.3. Sparse Solution Evaluation 

Even though the equations system in Equation (5) is still underdetermined, the sparsity of f can be 

exploited to find a suitable solution [28,29]. More specifically, it is possible to recover x by solving the 

following optimization problem ࢌ෠ = argminࢌ ଵ‖ࢌ‖ s. t. ࢌ ∈ ऌ(࢟)  (10)

where ‖∙‖ଵ stands for the l1-norm (i.e., the sum of the absolute values of the f components) and ऌ(࢟) is 

a proper constraint that assures the consistence with the samples y. In particular, in the presence of  

noise-free samples, the feasible set ऌ(࢟)	 can be expressed as ऌ(࢟) = ሼࢌ: ࢌۯ = ࢟ሽ  (11)

If the acquired samples have been contaminated with small amount of noise ε (such as the 

quantization noise) a better expression would be ऌ(࢟) = ሼࢌ: ࢌۯ‖ − ࢟‖૛ ≤ ઽሽ  (12)

In other words, the best estimate ࢌ෠  of the input signal spectrum turns out to be the sparse 

representation characterized by the minimum l1-norm. The use of l1-norm grants, in fact, that obtained 

solution will be sparse, a condition that is usually not met when least square minimization approaches 

are adopted. Moreover, the constraints (11) and (12) define the so-called feasible set and assure that the 

required estimate ࢌ෠  is a solution (either absolute or approximated) of the Equation (5). 

3.4. Input Signal Recovering 

Once the solution ࢌ෠  is obtained, the input signal of interest can easily be recovered by means of 

Equation (6) ෝ࢞ = શࢌ෠ (13)

It is worth reminding that the time support of the recovered signal is the whole observation  

interval Tw and its quantization is related to the resolution of the time-basis adopted to define the 

sampling instants. 

Finally, some considerations have to be drawn about the number of random digitized samples.  

In particular, it has been demonstrated [30] that the number of samples m has to meet the  

following condition: ݉ ≥ ଶ(઴,શ)ߤܵ log ݊ (14)

where ߤ(઴,શ) is the so-called coherence between the matrices ઴ and શ, defined as the quantity: 
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(઴,શ)ߤ = √݊ 1ݔܽ݉ ≤ ݇, ݆ ≤ ݊ห< ߮௞, ߰௝ >ห (15)

and φ୩ and ψ୨ stand, respectively, for the k-th row and the j-th column of the matrices ઴ and	શ and 

<·.·> indicates the traditional inner product. 

The coherence proves to be a fundamental parameter for the compression in determining the number 

of needed samples. The lower its value, the fewer the samples required for a reliable reconstruction of f 

and consequently of the original signal x. According to the choices made about ઴ and	શ, the coherence 

reaches the minimum allowed value, equal to 1, in the considered acquisition strategy, thus granting a 

proper reconstruction of an S-components signal with about ܵ log ݊ random samples. On the contrary, 

as it can be expected, the higher the number m of acquired samples, the lower the reconstruction error. 

However, as described in the following section, once the sparsity of the input signal is known, acquiring 

a larger number of samples proves to be not advantageous, since no more improvement in the 

reconstruction is experienced, while increasing the computational burden worthlessly. 

4. Numerical Results 

To preliminarily assess the performance of the proposed sampling strategy, several tests have been 

executed by means of numerical simulations. The effect of the most influencing parameters, such as 

number of acquired samples m, ADC sample rate fconv, ADC vertical resolution nbit, signal-to-noise ratio 

SNR, jitter and input signal sparsity S, has been evaluated. Parameters value has been chosen as close as 

possible to those provided by the cheapest microcontrollers [31] or granted by most of the embedded 

systems [32] that are currently available on the market. Similar values will be selected in the successive 

actual experimental tests. With regard to the number of acquired samples m, it has always been lower 

than typically available memory depth. On the contrary, the number of samples n granted for the signal 

reconstruction has been even much greater than memory depth, thanks to the CS-based approach. 

As an example, some of the obtained results are presented in the following. Unless otherwise 

indicated, the input signal for tests has been a pure unipolar sinusoidal signal whose full scale amplitude 

and frequency were equal respectively to 2nbit−1 codes and 5 kHz; 80 random samples have been 

digitized with an effective vertical resolution of 12 bits at an ADC sample rate fconv equal to  

10 kS/s, and the signal has been reconstructed over a time sequence of 10,000 samples at an effective 

sample rate fc of 1 MS/s. For the sake of clarity, the parameters values are summarized in Table 1. 

Table 1. Parameters values typically adopted in numerical tests. 

Parameter Value 

number of Acquired Samples 80 
number or reconstructed samples 10,000 

fconv [kS/s] 10 
nbit 12 

fc [MS/s] 1 
input signal frequency [kHz] 5 

input signal amplitude [Codes] 2௡್೔೟ − 1 
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The reconstruction error has been used to assess the performance of the acquisition strategy. 

According to what stated in [13], it is defined as: ߝ = ොݔ‖ − ‖ݔ‖‖ݔ ∙ 100 (16)

where ݔො is the reconstructed signal and x is the original one. 

4.1. ADC Sample Rate and Vertical Resolution 

A first set of tests aimed at verifying the dependence of the performance of the proposed acquisition 

strategy on the ADC conversion period and effective number of bits. Several nominal values of ADC 

sample rate fconv and vertical resolution nbit have been taken into account. 

As an example, Figure 5 shows the input signal, the acquired samples and the reconstructed signal 

(which completely overlies the input signal) when nbit and fconv were equal respectively to 12 and  

10 kS/s. It is worth noting that 80 samples are randomly taken throughout 50 periods of the input signal; 

the acquired sequence clearly violates the Nyquist theorem. To better appreciate the performance of the 

proposed acquisition strategy, point-by-point differences Δx between the reconstructed signal ݔො and the 

input signal x is shown in Figure 6. Differences greater than 1 code have never been found, thus assuring 

a reconstruction error as low as 0.007%. 

Figure 5. Example of input signal, acquired samples (red circles), and reconstructed signal. 

 

Figure 6. Point-by-point differences between reconstructed and input signal. 
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Some results of the executed tests are summarized in Figure 7. As it can be seen, the performance of 

the acquisition strategy turned out to be almost independent from the nominal ADC sample rate. This 

way, the desired acquisition can be carried out by exploiting the ADC with the lowest available sample 

rate. It is so possible to make the ADC working in less critical conditions, thus allowing to take advantage 

of most of its effective number of bits. 

Figure 7. Reconstruction error versus the ADC sample rate for different values of ADC 

vertical resolutions; markers associated with an ADC nominal sample rate of 1MS/s accounts 

for traditional CS approach. 

 

Moreover, for each test configuration in terms of nbit and fconv, reconstruction error proved to be lower 

than the associated least significant bit (LSB), thus assuring that no harmful artifacts have been 

introduced by the proposed strategy. Finally, to compare the performance of the proposed acquisition 

strategy with that granted by the traditional CS approach [20], the same test has been executed with a 

tconv equal to tc for each value of nbit. The obtained values (i.e., the markers corresponding to a nominal 

ADC sample rate of 1 MHz in Figure 7) highlighted that no significant difference can be appreciated 

whatever the vertical resolution of ADC; this behavior can be easily explained if the equations  

system (5) is taken into account. Even though the authors have defined a suitable procedure for the 

generation of the random sequence of sampling instants, this choice involves no significant differences 

in solving the system (5). In other words, any random sequence is as good as any other from a theoretical 

point of view; only a negligible degradation in the mean performance is experienced, due to the time 

difference constraint (2) that slightly reduce the possible randomness of the sequence indexes. Similar 

considerations hold also in the other investigated test conditions. 

4.2. Noise 

The influence of the noise on the performance has successively been investigated. For each value of 

SNR, 1000 pseudo-random sequences generated according to an additive white Gaussian noise (AWGN) 

have been added to the input signal; the average value of reconstruction errors have been evaluated. As 

an example, some results, obtained for different values of effective number of bits, are shown in  
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Figure 8. As expected, the higher the SNR, the better the performance of the proposed acquisition 

strategy. In particular, reconstruction errors similar to those given in Figure 7 have been achieved only 

for the higher values of SNR. 

Figure 8. Reconstruction error versus SNR; for different values of effective number of bits, nbit. 

 

4.3. Number of Acquired Samples and Effective Sample Rate 

A number tests have then been performed for different combinations both of number of random 

samples m and effective sampling frequency fc. As an example, some results are summarized in  

Figure 9. As it can be appreciated, the difference between reconstructed and original signal is always 

lower than 1 LSB, including when only 20 random samples are acquired, i.e., in the presence of a 

compression ratio ቀ1 − ௠௡ቁ ∙ 100 equal to 99.8%.  

Figure 9. Reconstruction error versus the effective sample rate fc for different values of 

number m of randomly acquired samples. 
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4.4. Jitter 

As stated above, all the clock signals (included the high-resolution time-basis adopted by the proposed 

acquisition strategy) of an embedded system are derived from a fundamental clock, usually referred to 

as instruction cycle clock, fCk. Due to the specific architecture of the microcontroller and the software 

implementation of the time-basis, a random difference between the nominal sampling instant and the 

effective one can occur. Such difference can be expressed in terms of number instruction cycles and 

typically assume integer values within 0 and 10 [32]. In other words, from the nominal SOC instant to 

its actual execution, a random number of instruction cycles could occur, due to latency or uninterruptable 

instructions problems. It is worth noting that this drawback can be mitigated, but not completely 

eliminated, and acts as a jitter on the high-resolution time-basis. Moreover, the actual jitter of the 

fundamental clock can be neglected in the following analysis, since its value is much lower than that 

associated with the instruction cycles. For the sake of the clarity, Figure 10a,b shows the actual SOC 

events (point-dashed lines) associated with a difference of two instruction cycles (TJt) from the nominal 

SOC event (dashed line) in the presence of ratios fCk/fc equal respectively to 1 and 4; the effect of the 

jitter on the actual digitized sample (circle marker) on the input signal (full line curve) is  

clearly reduced. 

Figure 10. Effect of instruction cycle jitter for different values of fCk/fc. 

 

To analyze the effect of jitter, several scenarios have been simulated in terms of different values of 

ratio between instruction cycle clock frequency and effective sample rate. As an example, obtained 

results are presented in Figures 11 and 12 for jitter values of 10 (worst case) and 2 (reduced jitter) 

instruction cycles, respectively. 

As it can be appreciated in Figure 11, 10 instruction cycles jitter highly degrades the performance of 

the proposed acquisition strategy. As expected, the worst results have been experienced when the 

effective sample rate matched the instruction cycle clock frequency; in this case, a difference with 

respect to the nominal value up to ten sampling instants can occur. Better results have been obtained for 

higher values of the ratio fCk/fc. However, values of reconstruction error never lower than 0.1% has been 
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encountered. The performance of the proposed acquisition strategy improves if the jitter is reduced down 

to 2 instruction cycles (Figure 12). Reconstruction errors of few hundredths can, in fact, be assured with 

a suitable level of ratio fCk/fc. 

Figure 11. Reconstruction error versus the number m of randomly acquired samples for 

different values of the ratio fCk/fc. when jitter equal to 10. 

 

Figure 12. Reconstruction error versus the number m of randomly acquired samples for 

different values of the ratio fCk/fc. when jitter equal to 2. 

 

4.5. Input Signal Sparsity 

Finally, the reconstruction error has been evaluated versus different values of number of acquired 

samples and number of spectral components included in the input signal (i.e., the signal sparsity in 

frequency domain). Specific test parameters are presented in Table 2. As for the sparsity, its maximum 

value has been chosen according to Equation (14), once defined the highest number of random acquired 
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samples. For each value of the signal sparsity 1000 numerical input signals have been generated by 

adding S spectral components whose amplitude, phase and location within the Nyquist band have been 

randomly selected. For each test configuration, minimum, average and maximum values of the 

reconstruction errors have been calculated in terms of m and S; some of the results are reported in Table 3. 

Table 2. Parameters adopted in numerical tests conducted with different values of signal 

sparsity S and m. 

Parameter Value 

number of acquired samples m [20, 40, 60, 80, 100] 
jitter [instruction cycles] 2 

SNR [dB] 50 
fCk/fc 20 

input signal sparsity S [1, 3, 5, 7, 9, 11] 

As it can be expected, the higher the spectral content of the input signal, the higher the number of 

samples that have to be acquired in order to accurately reconstruct the signal. However, values of 

reconstruction error up to 10% has been experienced also when the input signal has been recovered from 

100 random samples; this is mainly due to the effect of the considered jitter on spectral components 

characterized by higher frequency. This way, either the use of instruction cycle clocks with higher values 

of frequency or a greater number of random acquired samples is advisable to further mitigate this  

harmful effect. 

Table 3. Reconstruction error, expressed in relative percentage value, obtained in numerical 

tests conducted with different values of signal sparsity S and m. 

 m = 20 m = 40 m = 60 m = 80 m = 100  

S = 1 

0.02 0.01 0.01 0.01 0.01 Minimum 

1.04 0.85 0.80 0.78 0.79 Average 

3.52 1.89 1.65 1.55 1.61 Maximum 

S = 3 

0.28 0.05 0.05 0.05 0.05 Minimum 

10.86 1.32 0.59 0.54 0.52 Average 

22.45 11.88 1.56 1.38 1.32 Maximum 

S = 5 

4.11 0.21 0.04 0.05 0.03 Minimum 

17.34 6.77 1.00 0.45 0.41 Average 

35.52 20.45 10.06 1.71 1.29 Maximum 

S = 7 

12.15 1.41 0.25 0.11 0.08 Minimum 

21.55 13.28 5.69 0.61 0.38 Average 

51.58 22.71 17.26 2.47 1.11 Maximum 

S = 9 

11.59 9.05 1.19 0.19 0.12 Minimum 

26.98 17.09 10.82 3.40 0.45 Average 

50.76 28.47 24.22 16.41 1.94 Maximum 

S = 11 

11.61 9.06 5.82 0.90 0.19 Minimum 

28.10 19.15 14.49 8.34 2.28 Average 

56.48 26.18 25.37 19.26 9.48 Maximum 
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5. Experimental Tests 

A number of tests have finally been executed to assess the performance of the proposed acquisition 

strategy on two different cost-effective hardware architectures, characterized, respectively, by 8- and  

32-bits core microcontrollers and specifications very close to those presented in Sections 1 and 4.  

A suitable measurement station has been setup (Figure 13), which includes: 

• A microcontroller acting as DAS (either 8- or 32-bits); 

• A dual-channel arbitrary function generator AFG3252C (maximum output frequency  

240 MHz, 14 bits vertical resolution, 128 kSamples memory depth) by Tektronix; 

• A personal computer mandated to (i) generate the random sequence of sampling instants;  

(ii) transmit it to the low-cost DAS; (iii) receive back the acquired samples and (iv) process 

them by means of a free tool (namely CVX [33] and working in MATLABTM environment). 

Figure 13. Block diagram of the adopted measurment station. 

 

Input signals characterized by several sparsity values have been taken into account. With specific 

regard to signals different from pure sinusoidal tones, the so-called optimized multisine [34] has been 

adopted as test signal. The optimized multisine can be expressed as the sum of cosine waveform 

according to: 

(ݐ)ݔ = ෍ܣ௛ cos(2ߨ ௛݂ݐ + ߮௛)ௌ
௛ୀଵ  (17)

where Ah, fh, and ϕh stand for the amplitude, frequency and phase of the h-th spectral component, 

respectively. Their values can easily be combined to generate a multitone signal whose amplitude is 

tailored to the ADC full-scale range (3 V and 5 V for 8- and 32-bits architecture respectively). In 

particular, for the considered application, the amplitude of the spectral components have been set to the 

same value in order to obtain a flat amplitude spectrum in the frequency region of interest. The phase of 

each component has been selected according to the criterion of crest factor (CF) minimization, thus 

assuring signals with suitable SNR in the whole observation interval. More specifically, Schroeder 
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multisine [35] has been adopted; CF minimization was achieved by setting phase values according to 

the following expression: ߮௛ = −ℎ(ℎ − 1)ܵ π (18)

As for the tests conducted in simulations, the reconstruction error has been adopted as the 

performance indicator. The best estimate of the input signal x has been gained through either the 

traditional four parameters sine-fit [36] or multisine interpolation [37] of the reconstructed signal, 

according to the corresponding test. 

5.1. Tests Conducted on 32-Bits Microcontroller 

The performance of the acquisition strategy has first been assessed on a STM32F303VCTM by 

STMicroelectronics, a microcontroller based on ARM Cortex M4 core. It is characterized by a maximum 

instruction cycle frequency fCk equal to 72 MHz, data memory depth of 40 KB, four ADCs with 

selectable vertical resolution (6, 8, 10, and 12 bit) and full scale of 3 V [32]. The available values of Tconv 

consisted of the sum of: 

• A constant term TSAR equal to (nBit + 0.5) TCk required for the execution of the operations of 

internal SAR ADC; 

• A selectable term TSamp ranging from 1.5 up to 601.5 TCk accounting for the sampling time [32]. 

Unless otherwise indicated, the input signal for tests has been a pure unipolar sinusoidal signal whose 

full scale amplitude and frequency were equal respectively to 3 Vpp and 1.2 kHz; 100 random samples 

have been digitized with a nominal vertical resolution of 12-bits and the input signal has been 

reconstructed over a time sequence of 10,000 samples. The microcontroller was operated at its maximum 

instruction cycle frequency. 

A first set of tests has been conducted to assess the influence of the nominal sample rate, fconv, on the 

reconstruction performance of the proposed strategy. As expected, the higher the value of Tconv, (due to 

greater values of TSamp), the better the strategy performance, to the detriment of the ADC nominal sample 

rate. As an example, Table 4 summarizes the results obtained on a sinusoidal signal with frequency equal 

to 6 kHz, for effective sample rate ranging from 1 MS/s and 12 MS/s: severe performance degradation 

has been experienced with the lowest value of Tconv (195 ns). This is mainly due to limited duration of 

the associated sampling time; this way, largest Tconv (usually 32 TCk) have been adopted in the successive 

experimental tests. 

More exhaustive tests have been carried out on pure sinusoidal signals in different conditions of input 

signal frequency fs, number of acquired samples m, ADC actual sample rate fconv and frequency ratio 

fCk/fc. For each test configuration, 100 acquisitions have been made and the reconstruction error has been 

evaluated in terms of its mean and standard deviation values. In order to compare the results of the 

different configurations, the same sequence of random sampling instants has always been adopted. As 

an example, Figure 14 shows some results obtained when Tconv and fc were equal respectively to 2.7 μs 

and 12 MS/s. Similar results have been gained in the other tests configurations. The reconstruction error 

worsened for higher values of input signal frequency; the main reason for this was the effect of the 

instruction cycle jitter, as it can be noticed in Figure 14 and Table 5. 
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Table 4. Effect of TConv (expressed in terms of multiple of fundamental instruction  

clock tCk), on mean reconstruction errors and experimental standard deviation for different 

conditions of effective sample rate. 

 
m = 20 m = 50 m = 100  

14 32 194 14 32 194 14 32 194 tConv [tCk] 

fc = 1 MS/s 

0.278 0.057 0.076 0.235 0.078 0.079 0.124 0.083 0.080 Mean 

0.068 0.008 0.019 0.047 0.024 0.021 0.021 0.008 0.007 
Standard 
deviation 

fc = 2 MS/s 

0.267 0.075 0.066 0.168 0.079 0.081 0.100 0.081 0.079 Mean 

0.053 0.017 0.009 0.021 0.015 0.012 0.014 0.015 0.009 
Standard 
deviation 

fc = 4 MS/s 

0.243 0.073 0.060 0.116 0.075 0.072 0.109 0.081 0.078 Mean 

0.045 0.019 0.010 0.057 0.006 0.010 0.059 0.006 0.003 
Standard 
deviation 

fc = 12 MS/s 

0.125 0.069 0.069 0.087 0.081 0.089 0.094 0.079 0.083 Mean 

0.051 0.016 0.012 0.047 0.011 0.009 0.021 0.011 0.007 
Standard 
deviation 

In particular, Figure 15 reports the evolution of the mean reconstruction error versus the effective 

sample rate of the converter for 6 kHz input signal; as it can be noticed, the higher the effective sample 

rate, the better the reconstruction error, since the jitter effect is reduced. The jitter effect is more evident 

from the results reported in Table 5, which refer to a sinusoidal signal with frequency equal to 60 kHz, 

while the fundamental instruction clock adopted for the time-basis was equal either to 12 and 72 MS/s. 

Figure 14. Reconstruction error versus the input signal frequency for different number m of 

randomly acquired samples. 

 

A specific feature of the arbitrary function generator has been exploited to assess the performance of 

the acquisition strategy in the presence of noisy signals. To this aim, wideband AWGN signals 

(characterized by different amplitude levels and 240 MHz bandwidth) have been generated and added 

to the signal of interest. Figure 16 shows the results obtained when Tconv and fc were equal, respectively, 

to 2.7 μs and 12 MS/s; results similar to those achieved without noise are granted only for SNR higher 
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than 50 dB, i.e., the SNR value corresponding to the effective quantization noise of the adopted ADC as 

verified by the authors. 

Figure 15. Reconstruction error versus the effective sample rate for different number m of 

randomly acquired samples. 

 

Table 5. Mean reconstruction errors and experimental standard deviation for different 

conditions of effective sample rate and fundamental instruction cycle clock. 

 m = 20 m = 50 m = 100  

fc = 1 MS/s 
fCk = 12 MHz 

6.5 1.94 1.85 Mean 
1.2 0.34 0.30 Standard deviation 

fc = 1 MS/s 
fCk = 72 MHz 

3.3 0.97 0.93 Mean 
0.9 0.12 0.13 Standard deviation 

fc = 2 MS/s 
fCk = 12 MHz 

4.4 1.18 1.12 Mean 
0.8 0.12 0.11 Standard deviation 

fc = 2 MS/s 
fCk = 72 MHz 

2.5 0.76 0.72 Mean 
0.6 0.08 0.07 Standard deviation 

fc = 4 MS/s 
fCk = 12 MHz 

3.2 1.13 1.08 Mean 
0.6 0.11 0.10 Standard deviation 

fc = 4 MS/s 
fCk = 72 MHz 

2.1 0.72 0.68 Mean 
0.4 0.13 0.10 Standard deviation 

fc = 12MS/s 
fCk = 12 MHz 

1.9 0.71 0.73 Mean 
0.4 0.08 0.07 Standard deviation 

fc = 12 MS/s 
fCk = 72 MHz 

1.6 0.62 0.67 Mean 
0.3 0.06 0.05 Standard deviation 

The effect of the input sparsity has, finally, been investigated by means of the aforementioned 

multisine signal. To this aim, signals composed by different harmonic components have been taken into 

account. As an example, the results obtained for input signal involving up to 11 spectral components 

when Tconv and fc were equal respectively to 444 ns and 12 MS/s, which are given in Figure 17, show 

that the higher the spectral content, the worse the reconstruction error. Nevertheless, satisfying results 

(ε < 1%) are granted in the whole analysis range. 
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Figure 16. Reconstruction error versus signal-to-noise ratio. 

 

Figure 17. Reconstruction error versus the sparsity of the signal. 

 

5.2. Tests Conducted on 8-Bits Microcontroller 

Further experiments have been carried out on PIC18F4620 by Microchip, a typical example of very 

low cost, low performance 8-bit microcontroller. It is characterized by a maximum instruction cycle 

frequency fCk equal to 10 MHz, data memory depth of 4 kB, a single ADC with selectable vertical 

resolution (8- and 10-bit) and full scale of 5 V [31]. 

With regard to the considered configuration, a traditional external 4 MHz clock has been adopted, 

thus granting an effective fCk equal to 1 MHz. Similarly to the 32-bits microcontrollers, the nominal 

conversion interval TConv is given by the sum of a constant term equal to 11 TCk (needed for the 

digitization of the single sample) and a tunable sampling time ranging from 2 up to 20 TCk [31]. Tests 

have been conducted to the minimum Tconv (i.e., 15 μs) capable of assuring reliable conversion of the 

input signal, thus granting a theoretical maximum sample rate of about 66 kS/s. Unfortunately, the actual 

sample rate was limited to 20 kS/s due to some instructions (beyond the traditional registers move) 

needed to implement the random acquisition strategy. Even in the presence of highly optimized assembly 

implementation of the code, no new acquisitions could start before the considered instructions have been 
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executed. Thanks to the CS-based approach, the considered drawback has not only been recovered, but 

also overcome with sample rate values otherwise unavailable on the device. 

A first set of measurements involved different conditions of input signals frequency and number of 

acquired samples. Experiments have been conducted at an effective sampling rate fc equal to 1 MS/s  

(i.e., the worst condition in terms of instruction jitter) and nominal vertical resolution nbit equal either to 

8- or 10-bits. As for the successive tests, signal amplitude has been set to match the ADC full scale  

(5 V). For each test configuration, 100 successive random sequences have been acquired; as for the  

32-bits microcontroller, the same sequences of sampling instants have been adopted in order to compare 

the performance throughout the different configurations. Some results, in terms of average 

reconstruction error and experimental standard deviation, are reported in Tables 6 and 7 for 10- and  

8-bits resolution, respectively. 

Table 6. Mean reconstruction errors and experimental standard deviation with nominal 

vertical resolution of 10-bits. 

Signal Frequency (Hz) m = 20 m = 50 m = 100  

100 
0.47 0.32 0.04 Mean 
0.16 0.10 0.01 Standard deviation 

500 
2.9 2.3 0.28 Mean 
0.2 0.2 0.01 Standard deviation 

1000 
4.4 4.4 0.55 Mean 

0.4 0.3 0.02 Standard deviation 

Table 7. Mean reconstruction errors and experimental standard deviation with nominal 

vertical resolution of 8-bits. 

Signal Frequency (Hz) m = 20 m = 50 m = 100  

100 
0.48 0.36 0.18 Mean 

0.15 0.09 0.01 Standard deviation 

500 
2.9 2.2 0.32 Mean 

0.3 0.2 0.03 Standard deviation 

1000 
4.4 4.3 0.58 Mean 

0.4 0.4 0.03 Standard deviation 

As it could be expected, the highest the number of acquired samples, the better the reconstruction 

performance. This is particularly true for signals characterized by the highest frequency values, in 

correspondence of which the effect of instruction cycle jitter proved to be worse; jitter influence was so 

high in such conditions that similar results have been achieved for both vertical resolutions. As for the 

32-bits microcontroller, its effect should be mitigated by setting higher values of instruction  

cycle frequencies. 

The effect of noise on reconstruction performance has then been assessed by means of several tests 

conducted with different levels of AWGN signals and number of acquired samples. The test signal was 

a pure sinusoidal tone whose frequency has been set to 100 Hz. As an example, some results obtained 

for SNR values varying upon the interval from 20 up to 50 dB are shown in Table 8. As it can be noticed, 
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obtained results are better than those achieved in tests conducted through numerical simulations. 

Experienced improvement mainly relies on the reduced input bandwidth of the considered ADC (few 

tens of kHz), capable of cutting most of the high bandwidth (240 MHz) added noise. 

Table 8. Mean reconstruction errors and experimental standard deviation in different  

noise conditions. 

SNR (dB) m = 20 m = 50 m = 100  

20 
1.5 1.5 1.5 Mean 
0.2 0.2 0.2 Standard deviation 

30 
0.62 0.58 0.52 Mean 
0.10 0.11 0.05 Standard deviation 

40 
0.51 0.36 0.20 Mean 
0.15 0.10 0.03 Standard deviation 

50 
0.53 0.35 0.14 Mean 
0.14 0.09 0.02 Standard deviation 

Further tests have finally been conducted with optimized multisine input signals. Different conditions 

of signal sparsity and number of acquired samples have been taken into account. As an example,  

Figure 18 shows estimated input signal, acquired samples and the reconstructed signal when S  

and m were equal respectively to 5 and 100. More details can be appreciated in Figure 19, where the 

point-by-point differences between reconstructed and input signal is plotted. Some results are given in 

Table 9. No reliable results were obtained with a number of acquired samples lower than 20, while  

50 samples allowed to reconstruct the input signal with no more than 7 spectral components; as it can be 

expected, the best results were achieved only when at least 100 random samples were acquired. 

Figure 18. Example of estimated input signal, acquired samples (red circles), and 

reconstructed signal in the presence of 5-components multisine. 
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Figure 19. Point-by-point differences between reconstructed and input signal. 

 

Table 9. Mean reconstruction errors and experimental standard deviation in different 

conditions of input signal sparsity. 

Sparsity m = 50 m = 100  

3 
0.60 0.09 Mean 
0.22 0.01 Standard deviation

5 
2.5 0.29 Mean 
0.8 0.04 Standard deviation

7 
4.6 0.35 Mean 
1.2 0.11 Standard deviation

9 
- 0.53 Mean 
- 0.16 Standard deviation

11 
- 0.62 Mean 
- 0.21 Standard deviation

6. Conclusions 

The paper presented a new acquisition strategy, based on compressive sampling, for the improvement 

of the effective sampling rate of ADC usually integrated in microcontrollers or embedded systems. The 

proposed strategy exploits the availability of a high-resolution time-basis to finely set the sampling 

instants of the random samples acquired through a low-rate ADC. Thanks to the adopted CS approach, 

the signal of interest can be reconstructed with the same time-basis, thus enhancing the sample rate. 

Preliminary tests conducted in simulations highlighted the promising effective performance of the 

proposed strategy in the presence of signals characterized by different amplitude and spectral contents. 

Experimental tests have also been carried out on microcontrollers characterized by different internal 

architecture and operating specifications. It is worth highlighting that satisfying results were obtained 

with both embedded systems, with increase of effective sample rate up to 50 times with respect to the 

actual ADC sample rate. Different measurement conditions in terms of input signal and noise have been 

taken into account as well as several configurations of acquisition parameters, such as effective sample 

rate, nominal number of bits and number of acquired random samples. The results obtained and discussed 
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can be adopted as guidelines in choosing the proper trade-off between desired reconstruction error and 

computational burden. 

Ongoing activities are mainly related to (i) the performance comparison, in terms of computational 

burden, among the different tools available for the solution of the optimization problem (10); (ii) the 

identification of optimal random sequence capable of making the proposed strategy with the lowest 

reconstruction error and (iii) the application of the proposed acquisition strategy on ADC characterized 

by input bandwidth greater than maximum sample rate [16]. 

Acknowledgments 

The authors wish to thanks A. Smith, F. Pirozzi and S. Cannavacciuolo from ST Microelectronics  

at Arzano (Italy) for both the offered opportunity of testing the proposed acquisition approach  

on their STM32 microcontrollers and the technical support during the execution of the actual 

experimental tests. 

Author Contributions 

Francesco Bonavolontà, Annalisa Liccardo and Michele Vadursi have performed the research work, 

experimental results and drafted the research paper. Massimo D’Apuzzo has supervised the research 

operations and revised the final paper. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Landi, C.; Luiso, M.; Pasquino, N. A remotely controlled onboard measurement system for 

optimization of energy consumption of electrical trains. IEEE Trans. Instrum. Meas. 2008, 57, 

2250–2256. 

2. Sarkar, A.; Sengupta, S. Design and implementation of a low cost fault tolerant three phase energy 

meter. Measurement 2008, 41, 1014–1025. 

3. Adamo, F.; Attivissimo, F.; Cavone, F.; di Nisio, A.; Spadavecchia, M.; Channel Characterization 

of an Open Source Energy Meter. IEEE Trans. Instrum. Meas. 2014, 63, 1106–1115. 

4. Demirci, T.; Kalaycıoğlu, A.; Küçük, D.; Salor, O.; Güder, M.; Pakhuylu, S.; Atalık, T.; Inan, T.; 

Çadirci, I.; Akkaya, Y.; et al. Nationwide real-time monitoring system for electrical quantities  

and power quality of the electricity transmission system. IET Gener. Transm. Distrib. 2011, 5,  

540–550. 

5. Gallo, D.; Landi, C.; Pasquino, N. An instrument for objective measurement of light flicker. 

Measurement 2008, 41, 334–340. 

6. Lamonaca, F.; Nastro, V.; Nastro, A.; Grimaldi, D. Monitoring of indoor radon pollution. 

Measurement 2014, 47, 228–233. 



Sensors 2014, 14 18939 

 

 

7. D’Apuzzo, M.; Liccardo, A.; Bifulco, P.; Polisiero, M. Metrological Issues Concerning Low Cost 

EMG-Controlled Prosthetic Hand. In Proceedings of IEEE International Instrumentation and 

Measurement Technology Conference, Graz, Austria, 13–16 May 2012; pp. 1481–1486. 

8. Melillo, P.; Santoro, D.; Vadursi, M. Detection and compensation of inter-channel time offsets in 

indirect Fetal ECG sensing. IEEE Sens. J. 2014, 14, 2327–2334. 

9. Baccigalupi, A.; D’Arco, M.; Liccardo, A.; Vadursi, M. Testing high-resolution DACs:  

A contribution to draft standard IEEE P1658. Measurement 2011, 44, 1044–1052. 

10. Buonanno, A.; D’Urso, M.; Prisco, G.; Felaco, M.; Angrisani, L.; Ascione, M.;  

Schiano Lo Moriello, R.; Pasquino, N. A new measurement method for through-the-wall detection 

and tracking of moving targets. Measurement 2013, 46, 1834–1848. 

11. Ascione, M.; Buonanno, A.; D’Urso, M.; Angrisani, L.; Schiano Lo Moriello, R. A New 

Measurement Method Based on Music Algorithm for Through-the-Wall Detection of Life Signs. 

IEEE Trans. Instrum. Meas. 2013, 62, 13–26. 

12. Angrisani, L.; D’Arco, M.; Ianniello, G.; Vadursi, M. An Efficient Pre-Processing Scheme to 

Enhance Resolution in Band-Pass Signals Acquisition. IEEE Trans. Instrum. Meas. 2012, 61,  

2932–2940. 

13. Angrisani, L.; Vadursi, M. On the optimal sampling of bandpass measurement signals through data 

acquisition systems. Meas. Sci. Tech. 2008, 19, 1–9. 

14. D’Arco, M.; Genovese, M.; Napoli, E.; Vadursi, M. Design and Implementation of a Preprocessing 

Circuit for Bandpass Signals Acquisition. IEEE Trans. Instrum. Meas. 2014, 63, 287–294. 

15. MSP430F42xA Mixed Signal Miicrocontroller. Available online: http://www.ti.com/lit/ds/  

symlink/msp430f425a.pdf (accessed on 9 October 2014). 

16. AD9244, 14-Bit, 40 MSPS/65 MSPS A/D Converter Rev.C. Available online: 

http://www.analog.com/static/ imported-files/data_sheets/AD9244.pdf (accessed on 9 October 2014). 

17. Candès, E.; Wakin, M.B. An Introduction to Compressive Sampling. IEEE Signal Process. Mag. 

2008, 25, 21–30. 

18. Zhao, Y.; Hu, Y.H.; Wang, H. Enhanced Random Equivalent Sampling Based on Compressed 

Sensing. IEEE Trans. Instrum. Meas. 2012, 61, 579–585. 

19. Trakimas, M.; D’Angelo, R.; Aeron, S.; Hancock, T.; Sonkusale, S. A Compressed Sensing  

Analog-to-Information Converter with Edge-Triggered SAR ADC Core. IEEE Trans. Circuits Syst. 

2013, 60, 1135–1148. 

20. Chen, X.; Yu, Z.; Hoyos, S.; Sadler, B.M.; Silva-Martinez, J. A Sub-Nyquist Rate Sampling 

Receiver Exploiting Compressive Sensing. IEEE Trans. Circuits Syst. 2011, 58, 507–520. 

21. Bao, D.; Daponte, P.; de Vito, L.; Rapuano, S. Defining frequency domain performance of  

Analog-to-Information Converters. In Proceedings of 19th Symposium IMEKO TC-4, Barcelona, 

Spain, 18–19 July 2013; pp. 748–753. 

22. Angrisani, L.; Bonavolontà, F.; D’Apuzzo, M.; Schiano Lo Moriello, R.; Vadursi, M.; A Compressive 

Sampling Based Method for Power Measurement of Band-Pass Signals. In Proceedings of IEEE 

International Instrumentation and Measurement Technology Conference, Minneapolis, MN, USA, 

7–9 May 2013; pp. 102–107. 
  



Sensors 2014, 14 18940 

 

 

23. Bonavolontà, F.; D’Arco, M.; Ianniello, G.; Liccardo, A.; Schiano Lo Moriello, R.; Ferrigno, L.; 

Laracca, M.; Miele, G. On the Suitability of Compressive Sampling for the Measurement of 

Electrical Power Quality. In Proceedings of IEEE International Instrumentation and Measurement 

Technology Conference, Minneapolis, MN, USA, 7–9 May 2013, pp. 126–131. 

24. Angrisani, L.; Bonavolontà, F.; Ferrigno, L.; Laracca, M.; Liccardo, A.; Miele, G.;  

Schiano Lo Moriello, R. Multi-channel Simultaneous data Acquisition Through a Compressive  

Sampling-Based Approach. Measurement 2014, 52, 156–172. 

25. Candès, E.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from 

highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. 

26. Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. 

27. Candès, E.; Romberg, J. Sparsity and incoherence in compressive sampling. Inverse Probl. 2007, 

23, 969–985. 

28. Mesecher, D.; Carin, L.; Kadar, I.; Pirich, R. Exploiting signal sparseness for reduced-rate 

sampling. In Proceedings of IEEE Long Island Systems, Applications and Technology Conference, 

Farmingdale, NY, USA, 1 May 2009; pp. 1–6. 

29. Eldar, Y.C.; Kutyniok, G. Compressed Sensing Theory and Applications; Cambridge University Press: 

Cambridge, UK, 2012. 

30. Candès, E.; Romberg, J.; Tao, T. Stable signal recovery from incomplete and inaccurate 

measurements. Commun. Pure Appl. Math. 2006, 59, 1207–1223. 

31. PIC18F4620 Data Sheet, 28/40/44-Pin Enhanced Flash Microcontrollers with 10-Bit A/D and  

Nano Watt Technology. Available online: http://ww1.microchip.com/downloads/en/DeviceDoc/ 

39631E.pdf (accessed on 9 October 2014). 

32. RM0316 Reference Manual. STM32F302xx, STM32F303xx and STM32F313xx Advanced  

ARM-Based 32-bit MCUs. Available online: http http://www.keil.com/dd/docs/datashts/st/  

stm32f3xx/dm00043574.pdf (accessed on 9 October 2014). 

33. CVX: Matlab Software for Disciplined Convex Programming, Version 2.0 (beta). Available online: 

http://cvxr.com/cvx/ (accessed on 9 October 2014). 

34. Carnì, D.L.; Grimaldi, D. Voice quality measurement in networks by optimized multi-sine signals. 

Measurement 2008, 41, 266–273. 

35. Schroeder, M.A. Synthesis of low peak-factor signals and binary sequences of low autocorrelation. 

IEEE Trans. Inform. Theory 1970, 16, 85–89. 

36. Standard IEEE 1241-2010, IEEE Standard for Terminology and Test Methods for  

Analog-to-Digital Converters, 2011. Available online: http://wenku.baidu.com/view/ 

4aeb676c011ca300a6c390d8.html (accessed on 9 October 2014). 

37. Ramos, P.M.; Serra, A.C. Least-squares multiharmonic fitting: convergence improvements. IEEE 

Trans. Instrum. Meas. 2007, 56, 1412–1418. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


