The paper deals with the problem of the seismic stability of excavation fronts in the ancient Roman city of Pompeii, a famous UNESCO World heritage site near Napoli, Italy, buried under 4–6 m of volcanic ashes and pumices during the eruption of Mount Vesuvius in 79 AD. The attention is focused on the Insula dei Casti Amanti, a block of masonry buildings in the city centre partly excavated in recent years. Ground motion recorded on outcropping rock compatible with the seismo-tectonic background and the spectrum specified by the Italian code for the life-safety limit state criteria were used for wave propagation analysis. Both 1-D and 2-D Seismic Response Analyses were carried out to identify both surface (topographic) and valley (morphology) effects. This study allowed to quantify in a detailed manner the seismic demand in the excavation fronts. Re-profiling interventions based on the classical pseudo-static approach would be too invasive for the archaeological site. On the contrary, the alternative Newmark-type approach, based on the evaluation of the permanent rotations of the potentially unstable soil mass, is much more appropriate for a sustainable definition of slope stabilising interventions.

Seismic stability of the excavation fronts in the ancient Roman city of Pompeii

de Sanctis L.
Conceptualization
;
Iovino M.
Formal Analysis
;
Maiorano R. M. S.
Investigation
;
Aversa S.
Supervision
2020-01-01

Abstract

The paper deals with the problem of the seismic stability of excavation fronts in the ancient Roman city of Pompeii, a famous UNESCO World heritage site near Napoli, Italy, buried under 4–6 m of volcanic ashes and pumices during the eruption of Mount Vesuvius in 79 AD. The attention is focused on the Insula dei Casti Amanti, a block of masonry buildings in the city centre partly excavated in recent years. Ground motion recorded on outcropping rock compatible with the seismo-tectonic background and the spectrum specified by the Italian code for the life-safety limit state criteria were used for wave propagation analysis. Both 1-D and 2-D Seismic Response Analyses were carried out to identify both surface (topographic) and valley (morphology) effects. This study allowed to quantify in a detailed manner the seismic demand in the excavation fronts. Re-profiling interventions based on the classical pseudo-static approach would be too invasive for the archaeological site. On the contrary, the alternative Newmark-type approach, based on the evaluation of the permanent rotations of the potentially unstable soil mass, is much more appropriate for a sustainable definition of slope stabilising interventions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/85910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact