We investigated the hypoxia-induced disturbance of cytosolic sodium concentration ([Na+]i) and of cytosolic calcium concentration ([Ca2+]i) in dopamine neurons of the substantia nigra pars compacta in rat midbrain slices, by combining whole cell patch-clamp recordings and microfluorometry. Transient hypoxia (3-5 min) induced an outward current (118.7 +/- 15.1 pA, mean +/- SE; VH = -60 mV). The development of this outward current was associated with an elevation in [Na+]i and in [Ca2+]i. The hypoxia-induced outward current as well as the elevations in [Na+]i and [Ca2+]i were not affected by the ionotropic and metabotropic glutamate receptor antagonists -amino-phosphonovalerate (50 microM), 6nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (10 microM) and S-(alpha)-methyl-4-carboxyphenylglycine (500 microM). Tolbutamide, a blocker of ATP-dependent K+ channels, depressed the hypoxia-induced outward current but did not affect the increases in [Na+]i or [Ca2+]i. Increasing the concentration of ATP in the internal solution from 2 to 10 mM strongly reduced the hypoxia-induced outward current but did not reduce the rise in [Na+]i. Decreasing the concentration of extracellular Na+ to 19.2 mM depressed the hypoxia-induced outward current and resulted in a decrease in resting [Na+]i. Under this condition hypoxia still increased [Na+]i, albeit to levels not exceeding those of resting [Na+]i observed under control conditions. We conclude that 1) a major component of the hypoxia-induced outward current of these cells is caused by a depletion of intracellular ATP in combination with an increase in [Na+]i, 2) that the [Na+]i and [Ca2+]i responses are not mediated by glutamate receptors, 3) that the [Na+]i and [Ca2+]i responses are not depressed by activation of sulfonylurea receptors, and 4) that the rise in [Na+]i induced by short-lasting hypoxia is not due to a ATP depletion-induced failure of Na+ extrusion.

Intracellular sodium and calcium homeostasis during hypoxia in dopamine neurons of rat substantia nigra pars compacta

GUATTEO, EZIA;
1998-01-01

Abstract

We investigated the hypoxia-induced disturbance of cytosolic sodium concentration ([Na+]i) and of cytosolic calcium concentration ([Ca2+]i) in dopamine neurons of the substantia nigra pars compacta in rat midbrain slices, by combining whole cell patch-clamp recordings and microfluorometry. Transient hypoxia (3-5 min) induced an outward current (118.7 +/- 15.1 pA, mean +/- SE; VH = -60 mV). The development of this outward current was associated with an elevation in [Na+]i and in [Ca2+]i. The hypoxia-induced outward current as well as the elevations in [Na+]i and [Ca2+]i were not affected by the ionotropic and metabotropic glutamate receptor antagonists -amino-phosphonovalerate (50 microM), 6nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (10 microM) and S-(alpha)-methyl-4-carboxyphenylglycine (500 microM). Tolbutamide, a blocker of ATP-dependent K+ channels, depressed the hypoxia-induced outward current but did not affect the increases in [Na+]i or [Ca2+]i. Increasing the concentration of ATP in the internal solution from 2 to 10 mM strongly reduced the hypoxia-induced outward current but did not reduce the rise in [Na+]i. Decreasing the concentration of extracellular Na+ to 19.2 mM depressed the hypoxia-induced outward current and resulted in a decrease in resting [Na+]i. Under this condition hypoxia still increased [Na+]i, albeit to levels not exceeding those of resting [Na+]i observed under control conditions. We conclude that 1) a major component of the hypoxia-induced outward current of these cells is caused by a depletion of intracellular ATP in combination with an increase in [Na+]i, 2) that the [Na+]i and [Ca2+]i responses are not mediated by glutamate receptors, 3) that the [Na+]i and [Ca2+]i responses are not depressed by activation of sulfonylurea receptors, and 4) that the rise in [Na+]i induced by short-lasting hypoxia is not due to a ATP depletion-induced failure of Na+ extrusion.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/53645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? ND
social impact