The thioredoxin system is a redox machinery widely distributed in nature and involved in several cellular functions. It is constituted of thioredoxin reductase (Trx-B), its protein substrate thioredoxin (Trx-A) and NADPH. We have previously characterised a Trx-B from the hyperthermophile Sulfolobus solfataricus (SsTrx-B3) (Ruocco et al. in Biochimie 86:883-892, 2004). As in the genome of this archaeon, the gene coding for another Trx-B (SsTrx-B2) and for two Trx-A (SsTrx-A1, SsTrx-A2) have been putatively identified, these proteins were obtained as recombinant forms and characterised. SsTrx-B2, different from SsTrx-B3, did not elicit a thioredoxin reductase activity. S. solfataricus possessed only one Trx-B (SsTrx-B3), which had two thioredoxins (SsTrx-A1 and SsTrx-A2) as substrates. These latter showed a homodimeric structure and catalysed insulin reduction using either DTT or NADPH/SsTrx-B3 as electron donors. In addition, the electron transfer between SsTrx-B3 and either SsTrx-A1 or SsTrx-A2 was fully reversible, thus allowing the determination of the redox potential of the thioredoxin system in S. solfataricus. Among the two thioredoxins, SsTrx-A2 appeared slightly more active and stable than SsTrx-A1. These data, besides shedding light on thioredoxin system in S. solfataricus, will contribute to add further information on this key enzyme system in Archaea.

Characterisation of the components of the thioredoxin system in the archaeon Sulfolobus solfataricus

MASULLO, Mariorosario
2008-01-01

Abstract

The thioredoxin system is a redox machinery widely distributed in nature and involved in several cellular functions. It is constituted of thioredoxin reductase (Trx-B), its protein substrate thioredoxin (Trx-A) and NADPH. We have previously characterised a Trx-B from the hyperthermophile Sulfolobus solfataricus (SsTrx-B3) (Ruocco et al. in Biochimie 86:883-892, 2004). As in the genome of this archaeon, the gene coding for another Trx-B (SsTrx-B2) and for two Trx-A (SsTrx-A1, SsTrx-A2) have been putatively identified, these proteins were obtained as recombinant forms and characterised. SsTrx-B2, different from SsTrx-B3, did not elicit a thioredoxin reductase activity. S. solfataricus possessed only one Trx-B (SsTrx-B3), which had two thioredoxins (SsTrx-A1 and SsTrx-A2) as substrates. These latter showed a homodimeric structure and catalysed insulin reduction using either DTT or NADPH/SsTrx-B3 as electron donors. In addition, the electron transfer between SsTrx-B3 and either SsTrx-A1 or SsTrx-A2 was fully reversible, thus allowing the determination of the redox potential of the thioredoxin system in S. solfataricus. Among the two thioredoxins, SsTrx-A2 appeared slightly more active and stable than SsTrx-A1. These data, besides shedding light on thioredoxin system in S. solfataricus, will contribute to add further information on this key enzyme system in Archaea.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/22988
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact