We present a high-resolution sedimentological analysis of Barremian-Aptian shallow-water carbonates from two cores (S. Maria 6 and 4) that were drilled in the central Apennines (central Italy) and one section (Monte Faito) that crops out in the southern Apennines (southern Italy). The aims of this work are (a) to propose a high-resolution correlation of sections that are located approximately 170 km apart in different tectonic units and paleogeographic domains using a microstratigraphic (cm-scale) approach and (b) to reveal global and regional mechanisms that control the stratigraphic architecture of these carbonate platform strata. A composite S. Maria section was assembled by integrating the sedimentologic and biostratigraphic analyses of the two cores, which overlap each other across the Barremian-Aptian boundary. Both the S. Maria and the Monte Faito sections show repetitive facies patterns that are expressed as elementary cycles, which are hierarchically grouped into bundles and superbundles. The elementary cycles are meter-scale sedimentary units that are bounded by subaerial erosion surfaces, which directly overlie subtidal deposits. This implies that they formed under the influence of relative sea-level fluctuations. In both sections, the superbundles are organized into Transgressive/Regressive Facies Trends (T/RFTs), which are considered to be expressions of lower-frequency relative sea-level changes. These deposits, like their Cretaceous analogues of other areas of the Apennines, show evidence of astronomically controlled eustatic oscillations, which are reflected in the hierarchical organization of their stacking patterns. They also exhibit a sequence-stratigraphic configuration that is best recognizable in the superbundles and T/RFTs. Based on integrated stratigraphic criteria, a high-resolution regional correlation between S. Maria and Monte Faito was developed and compared with the reference section of Monte Raggeto (M. Maggiore, southern Apennines, Italy), where biostratigraphic and cyclostratigraphic studies have been complemented by magneto- and isotope-stratigraphy. We also propose a chronostratigraphic correlation between our T/RFTs and the Tethyan stratigraphic cycles of Hardenbol et al. (1998). Based on the cyclostratigraphic interpretation and orbital chronostratigraphy of the studied interval, we estimate a minimum duration of 5.2 my for the Barremian stage, which is similar to the 4.5 my duration from the Geological Time Scale of Gradstein et al., (2012).

Cyclostratigraphic and chronostratigraphic correlations in the Barremian-Aptian shallow-marine carbonates of the central-southern Apennines (Italy)

AMODIO, Sabrina
;
2013-01-01

Abstract

We present a high-resolution sedimentological analysis of Barremian-Aptian shallow-water carbonates from two cores (S. Maria 6 and 4) that were drilled in the central Apennines (central Italy) and one section (Monte Faito) that crops out in the southern Apennines (southern Italy). The aims of this work are (a) to propose a high-resolution correlation of sections that are located approximately 170 km apart in different tectonic units and paleogeographic domains using a microstratigraphic (cm-scale) approach and (b) to reveal global and regional mechanisms that control the stratigraphic architecture of these carbonate platform strata. A composite S. Maria section was assembled by integrating the sedimentologic and biostratigraphic analyses of the two cores, which overlap each other across the Barremian-Aptian boundary. Both the S. Maria and the Monte Faito sections show repetitive facies patterns that are expressed as elementary cycles, which are hierarchically grouped into bundles and superbundles. The elementary cycles are meter-scale sedimentary units that are bounded by subaerial erosion surfaces, which directly overlie subtidal deposits. This implies that they formed under the influence of relative sea-level fluctuations. In both sections, the superbundles are organized into Transgressive/Regressive Facies Trends (T/RFTs), which are considered to be expressions of lower-frequency relative sea-level changes. These deposits, like their Cretaceous analogues of other areas of the Apennines, show evidence of astronomically controlled eustatic oscillations, which are reflected in the hierarchical organization of their stacking patterns. They also exhibit a sequence-stratigraphic configuration that is best recognizable in the superbundles and T/RFTs. Based on integrated stratigraphic criteria, a high-resolution regional correlation between S. Maria and Monte Faito was developed and compared with the reference section of Monte Raggeto (M. Maggiore, southern Apennines, Italy), where biostratigraphic and cyclostratigraphic studies have been complemented by magneto- and isotope-stratigraphy. We also propose a chronostratigraphic correlation between our T/RFTs and the Tethyan stratigraphic cycles of Hardenbol et al. (1998). Based on the cyclostratigraphic interpretation and orbital chronostratigraphy of the studied interval, we estimate a minimum duration of 5.2 my for the Barremian stage, which is similar to the 4.5 my duration from the Geological Time Scale of Gradstein et al., (2012).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/22763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact