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This paper deals with the problem of real-time onboard relative positioning of low Earth 

orbit spacecraft over long baselines using the Global Positioning System. Large inter-satellite 

separations, up to hundreds of kilometers, are of interest to multistatic and bistatic Synthetic 

Aperture Radar applications, in which highly accurate relative positioning may be required 

in spite of the long baseline. To compute the baseline with high accuracy the integer nature of 

dual-frequency, double-difference carrier-phase ambiguities can be exploited. However, the 

large inter-satellite separation complicates the integer ambiguities determination task due to 

the presence of significant differential ionospheric delays and broadcast ephemeris errors. To 

overcome this problem, an original approach is proposed, combining an extended Kalman 

filter with an integer least square estimator in a closed-loop scheme, capable of fast on-the-fly 

integer ambiguities resolution. These integer solutions are then used to compute the relative 

positions with a single-epoch kinematic least square algorithm that processes ionospheric-free 

combinations of de-biased carrier-phase measurements. Approach performance and 

robustness are assessed by using the flight data of the Gravity Recovery and Climate 

Experiment mission. Results show that the baseline can be computed in real-time with 

decimeter-level accuracy in different operating conditions. 
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I. Introduction 

Space applications like spaceborne remote sensing, geodesy, multidimensional magnetosphere investigation, and 

universe observation by space interferometry require simultaneous observations taken at largely separated points in 

space, preventing the use of a single monolithic platform. With specific reference to Low Earth Orbit (LEO) missions, 

remote sensing applications based on using Synthetic Aperture Radars (SAR) are meaningful examples of formation 

flying. Cross-Track Interferometry (XTI) and Large-Baseline Bistatic (LBB) SAR applications rely on processing 

radar images of the same scene produced by two or more physically separated antennas [1]–[3], which shall be 

distributed on different spacecraft following specific relative orbital paths in order to realize the desired separation. 

The size of the physical separation, i.e. the baseline, depends on the considered application, and can range from a few 

hundreds of meters in XTI applications [1],[2] to a few hundreds of kilometers in LBB SAR missions [3]. Depending 

on the application, the knowledge of the inter-satellite separation up to the millimeter level may be required also over 

very long baselines (i.e. hundreds of kilometers). Even though this accuracy is needed on ground and not in real-time 

for scientific data processing [4], the capability of determining the baseline on board with an accuracy in the order of 

a decimeter can be of potential interest for future distributed Earth observation systems based on flying multiple low-

cost small platforms. Formation management and scientific applications can greatly benefit from an increased 

autonomy level [5], performing operations as formation control and image generation on board thanks to a precise 

knowledge of the baseline. 

Carrier-phase Differential GPS (CDGPS) is a promising solution to have highly precise relative position fixes. Its 

capability to achieve accurate relative positions, i.e. at the cm-level or even better, is essentially based on the 

possibility to exploit the integer nature of Double Difference (DD) carrier-phase ambiguities. Several previous studies 

have investigated its performance in LEO formations, especially for short separations (up to tens of kilometers) [6]-

[9]. As the separation among the satellites increases, the correlation of ionospheric delays [9] and broadcast ephemeris 

errors [10] among the receivers decreases. DD GPS observables are thus affected by significant errors that, if not 

properly considered, complicate the integer resolution task, spoiling the stability of the relative navigation solution, 

which can easily diverge. Relatively few works have dealt with long-baseline applications [10]–[12], exploiting dual 

frequency measurements and final (ephemeris) products. Dual-frequency GPS receivers allow observing and, then, 

compensating ionospheric path delays, and ephemeris errors can be drastically reduced by using final products instead 

of ephemeris data broadcast along with the ranging signal. In addition, residual differential errors are filtered out in 
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these applications with dynamic filters relying on complex, high-fidelity absolute and relative dynamics models. 

Experimentations on true-world GPS flight data demonstrated the capability for mm-scale relative positioning [11] of 

this approach, if complemented by smoothing techniques in which filter results are processed backward and forward. 

However, precise ephemeris are not available on board, and smoothing techniques cannot be used in real-time 

applications. Moreover, the use of high-complexity dynamic models is limited in onboard implementations by the 

significant computational load [13]. 

Compared to the above dynamic-based schemes, kinematic-based approaches show some interesting features for 

onboard implementation. The computational load is notably smaller and results are not affected by the inaccuracies 

of the considered dynamics models, so kinematic approaches can be used also during satellite maneuvers. The main 

drawback is the reduced observability of the unknowns, since the time correlation introduced by dynamics models 

cannot be exploited. This can also cause a temporary loss of the solution due to an unfavorable observation geometry 

or an insufficient number of GPS satellites. Purely kinematic approaches have been rarely proposed for long baseline 

formations [14],[15]. Of these, only one exploits the integer nature of DD carrier-phase ambiguities [15]. 

Conversely, Real-Time Kinematic (RTK) schemes implemented in the present generation dual-frequency GPS 

receivers for long baseline terrestrial applications are a mature technology. Autonomous relative positioning between 

ground-based receivers is routinely performed with accuracies in the order of few centimeters for horizontal baselines, 

whereas larger separations require long initialization times and multi-baseline network solutions [16],[17]. The core 

of terrestrial RTK schemes is the capability to produce fast, accurate, and robust solutions for carrier-phase integer 

ambiguities. These solutions are then used to remove the contribution of the integer ambiguities from the ionospheric-

free combination [18] of dual-frequency carrier-phase observables. The resulting de-biased carrier-phase 

measurements yield the final accurate baseline estimation typically computed by kinematic least-squares algorithms 

[16] – [18]. 

The same approach can be extended to satellite relative positioning. With respect to terrestrial applications, RTK 

can take advantage of the rapidly changing Line-of-Sight (LoS) vector to GPS satellites, which can speed up the 

ambiguity resolution [15], and of the smaller magnitude of atmospheric effects at LEO altitudes. Even though these 

advantages might enable successful kinematic relative positioning over baselines longer than for ground-based 

applications, there are important practical limitations for the satellite case. The GPS observation geometry is in general 

worse than in the terrestrial case due to the receiver’s altitude. Furthermore, fast dynamics make ambiguities 
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observable but, at the same time, the number of the tracked GPS satellites is much more variable. Hence, simple 

accumulation of integer ambiguity estimates over several time epochs [15] is not a successful strategy for reliable, on 

the fly, ambiguity resolution. The approach pursued herein is to include simple dynamical models that increase the 

ambiguities' observability by providing time correlation to the other unknowns, most notably the geometric term.  

More precisely, this paper presents an original dual frequency, CDGPS-based, filtering approach specifically 

designed for precise real-time relative positioning of long baseline LEO formations, and for possible onboard 

application. It extends the RTK technique to spaceborne applications, by separating the computation of the integer 

ambiguities from the relative positioning solution, as in previous terrestrial [16], [17], and satellite [15] RTK 

approaches. The main novelty of the proposed approach is the development of a new closed-loop dynamic filter 

scheme to perform reliable and robust on-the-fly ambiguity resolution. This closed-loop scheme fully integrates the 

dynamic filter with an integer resolution step to exploit the integer nature of DD ambiguities for improving the 

dynamic filter’s solution.  

The proposed approach consists in a two-step solution. The first step estimates DD integer ambiguities using as 

little computational effort as possible. More specifically, DD Wide Lane (WL) and L1 Integer Ambiguities (IA) are 

computed as the solution of a closed-loop dynamic filter that combines an Extended Kalman Filter (EKF) with a 

standard Integer Least Square (ILS) estimator. To support the integer ambiguities resolution, DD ionospheric delays 

terms are specifically modeled in the filter by means of the Vertical Total Electron Content (VTEC). In contrast to the 

previous approaches, the closed-loop dynamic filter exploits a simple non-linear model of the relative dynamics. This, 

together with specifically designed integer validation procedures, provides an accuracy adequate to solve the integer 

ambiguities while preventing filter instability and reducing the computational effort to a level suitable for onboard 

implementation. Assuming that a set of integer ambiguities is correctly resolved, and therefore perfectly known, the 

second step provides the relative position with high accuracy. To this end, it employs only ionosphere-free 

combinations of carrier phase measurements de-biased with the fixed integer ambiguities. The relative position fix 

results from a single-epoch least-square kinematic filter, which requires very low additional computational resources. 

The remainder of the paper is organized as follows. The concept of precise relative positioning over long baselines 

by CDGPS in real-time is reviewed in the next section. The techniques proposed for on-the-fly ambiguity resolution 

and for obtaining the single-epoch kinematic solution are discussed in detail in sections III and IV, respectively. At 
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last, performance of the developed filtering approach is assessed in section V using real flight data from the Gravity 

Recovery and Climate Experiment (GRACE) mission. 

II. Long-baseline Real Time Relative Positioning by CDGPS 

The present paper focuses on a formation of two LEO satellites (chief and deputy), separated by a distance in the 

order of hundreds of kilometers, having similar shapes and a three axis stabilized, nadir-pointing attitude, as typical 

in remote sensing applications. Spaceborne geodetic-grade dual frequency receivers, such as the one in [6], are 

considered as the primary navigation sensor. Relative positions are sought in real-time by an algorithm suitable for 

onboard implementation. It makes indeed a limited use of computational resources and exploits only data available 

on board, most notably broadcast ephemeris. However, onboard applications require solving a series of 

implementation challenges (e.g. time synchronization, telemetry between the satellites, in-flight calibration) which 

influence the accuracy achievable by the algorithm. The severity and mitigation of such effects heavily depends on 

the specific mission. Their detailed discussion is out of the scope of this work, which refers to a standard formation 

flying scenario, where the chief satellite is supposed to receive deputy GPS observables by means of a satellite inter-

link and the positioning is performed on board the chief satellite. Observables will thus be affected by a latency that 

is expected to range from a few tenths of second to 1 second at most [14] depending on the specific mission, which is 

compatible with the time scale of the relative dynamics in long baseline LEO formations.  

GPS measurements are assumed to be synchronized prior to be processed for relative positioning. The considered 

GPS receivers are characterized by the capability to align the receiver time to GPS time within a tolerance margin 

generally better than 1 s. This is achieved by steering the internal oscillator based on the clock error of the receiver, 

obtained as part of the navigation solution [14],[19]. The raw GPS observables are thus aligned to integer seconds of 

the GPS time with an error smaller than 1 s. Uncompensated timing residuals of this magnitude are treated as errors 

of the observation models, as discussed later on. The receivers on board the two satellites are therefore capable of 

delivering four GPS observables tagged at integer seconds of the GPS time tk, one pseudorange and one carrier-phase 

measurement per each of the two L1 and L2 frequencies. The following standard model [18] is used to relate these 

observables to the observation geometry. Explicit time dependency is omitted for conciseness, in this case and 

whenever it can be clearly devised by the context. 

    1 1

sv svsv sv sv

rec rec rec Prec rec
P c t c t i      ρ  (1a) 
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    2

2 2

sv svsv sv sv

rec rec rec Prec rec
P c t c t i       ρ  (1b) 

    1 1 1, 1

sv svsv sv sv sv

rec rec rec rec Lrec rec
L c t c t i        ρ  (1c) 

    2

2 2 2, 2

sv svsv sv sv sv

rec rec rec rec Lrec rec
L c t c t i         ρ  (1d) 

In Eq.(1), P and L stand for the pseudorange and carrier phase measurements, respectively, expressed in meters, 

the subscripts 1 and 2 indicate the L1 and L2 frequency, and sv denotes the GPS Satellite Vehicle (SV) from which 

the measurement is taken by the receiver rec. The LoS distance between the SV sv and the receiver rec is denoted by 

sv

recρ , the receiver and SV clock biases by c∙δtrec and c∙δtsv, respectively, c being the speed of light in vacuum. Because 

the receivers are above the troposphere and part of the ionosphere, the atmosphere induces only a dispersive delay due 

to the remaining ionosphere, which on the L1 frequency is denoted as sv

reci . Only first order ionospheric delays are 

accounted for, which depend on the inverse square of carrier frequency and have an anti-symmetric effect on 

pseudoranges and carrier-phase. The ionospheric delay on L2 is thus univocally determined by sv

reci  and the ratio 

between GPS signal wavelengths, γ=λ1/λ2. The carrier phase equation on the frequency f includes also the cycle 

ambiguity term ,

sv

f f rec  . This term represents the difference between the initial values of the transmitted and internal 

receiver replica signal’s phase, and is a real number that does not change until phase lock is lost between sv and rec. 

All other error terms, most notably multipath, line bias, measurement noise, and polarization induced windup for 

carrier-phase measurements [20], are enclosed into the ε term, which is thus assumed to depend on both the SV and 

the receiver and is typically different for L1 and L2 frequencies.  

Eq.(1) depend on the receiver and SV absolute position vectors, rrec and Rsv, respectively, via the sv

recρ  vector. Note 

that for computing the LoS distance travelled by the ranging signals in Eq.(1), the SV position must be taken at the 

time at which the signal left the transmitter, that is, tk minus the signal propagation time sv

rec . Letting the subscripts d 

and c refer to the receivers on board the deputy and chief satellites, respectively, the LoS distance vectors read  

 
     

       

sv sv sv

c k k c c k

sv sv sv

d k k d c k k

t t t

t t t t





  

   

ρ R r

ρ R r b
 (2) 

The application of ephemeris data yields uncertainties in the SV position and generates an effect that is similar to 

a miscalculation of the transmission time. The first order effect on the LoS distance depends on the projection of the 
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SV vector position error onto the LoS direction [18], which makes the ephemeris error dependent also upon the 

receiver position. When using broadcast ephemeris, this ranging error has a representative magnitude of few meters, 

which is the limiting factor for dual-frequency spaceborne GPS receivers [21]. The time tag accuracy of the considered 

GPS receivers also affects the computed LoS distance. This effect depends on the product of the time tag error and 

the projection of both SV and receiver velocity on the LoS direction and is sub-centimetric for the considered GPS 

receivers in LEO.  

Starting from the observation model of Eq.(1), observations of the same kind, e.g. P1, can be differenced for 

deleting the common-mode errors that affect the receivers’ absolute positions to the same extent, and thus do not 

impact their relative position. More specifically, Single Difference (SD) observations are obtained by taking the 

difference of measurements from the same SV j between two receivers. This allows deleting all SV-generated common 

mode errors, such as the SV clock bias. The difference between all receiver-generated common-mode errors, including 

the clock biases explicitly mentioned in Eq.(1) and other effects such as line delays, still appears in SD observables. 

However, it can be cancelled by forming DD observables, i.e. differencing SD observations between a GPS satellite 

j, denoted as the pivot, and any other SV k in view of both receivers. Only the terms jointly depending on the SV and 

the receiver do not cancel, such as the DD geometric term, which combines the four relevant LoS ranges shown in 

Fig. 1 as 
jk k j k j

d d c cg    ρ ρ ρ ρ . Depending on the unknown position vectors of both receivers, this term is 

customarily manipulated for determining the relative position b of the deputy receiver w.r.t. the chief one, using an 

independently determined estimate of the chief position rc, e.g. obtained by Eq.(1). The DD geometric term can be 

related to the DD observables by the following standard model, shown only on the L1 frequency for compactness.  

 

 
Fig. 1 Double differencing for relative positioning. 
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 1 1

jk jk jk jk

PP g i     (3a) 

 
1 1 1 1

jk jk jk jk jk

LL g i n      (3b) 

DD terms are denoted by the same symbol of non-differenced ones, but with no receiver subscript and double SV 

indexes as superscript, with the exception of the cycle ambiguity term 1 1, 1, 1, 1,

jk k j k j

d d c cn        , expressed in cycles. 

DD broadcast ephemeris errors induce a systematic error on both pseudorange and carrier-phase observables by means 

of the geometric term gjk. The non-common aliquot of the ephemeris error is due to the misalignment of LoS unit 

vectors pointing to the same SV, which increases with the baseline magnitude, but it is not modeled explicitly in 

Eq.(3). The effect of the time tag errors, which are different for the two GPS receivers, is an additional error to the 

DD geometric term. However, its magnitude does not strictly depend on the baseline but it is dominated by the 

projection onto the LoS vectors of the vector sum of the velocities of the receivers [22]. The worst case is therefore 

when the velocities of the receivers are aligned, which is always very likely in LEO formation flying for remote 

sensing, when the orbits are almost parallel. The amount of this error is however not expected to exceed 1-2 cm when 

the time tag error is lower than 1 s, as for geodetic-grade GPS receivers. Other residual, non-common-mode, 

systematic errors, like polarization induced windup, antenna phase-center variations, and multipath, are enclosed in 

the noise term ε as they tend to be smaller than the ephemeris error.  

The ionospheric delay is also reduced by the differencing operations. The magnitude of this term depends on the 

baseline between the two receivers and on the ionosphere electron content. For typical solar conditions, this term is 

negligible for baselines under about 10 km [11], whereas it can be in the order of the meter for baselines of few 

hundreds of kilometers [23]. Dual frequency measurements are essential for compensating such term, as DD carrier-

phase measurements can be used to form the following ionospheric-free observable. 

    2 1
1 2 1 22 2

1

1 1

jk jk jk jk jk jk

LIFL L g n n


  
 

    
 

 (4) 

CDGPS techniques over long baselines take advantage of Eq.(4) for achieving a highly accurate relative position. 

As thoroughly discussed in [20], to which the interested reader is referred, the cycle ambiguity 
jk

fn  becomes integer 

after double differencing, provided that the receivers are properly designed. Knowledge of the integer nature of the 

ambiguities allows compensating exactly the cycle ambiguity term in Eq.(4), at least in principle. In some cases, 

including this paper, the wide-lane (WL) combination [18] of L1 and L2 ambiguities, nw = n1 – n2, is used in place of 
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L2 ambiguities. Despite the chosen ambiguity parameterization, two independent integer ambiguity estimates are 

needed for de-biasing the observables in Eq.(4). These de-biased ionospheric-free DD carrier-phase observables allow 

directly sampling the DD geometric term with an accuracy comparable to the sub-centimetric carrier-phase 

measurement noise, provided that systematic errors in the εLIF term are negligible. This feature is the key element used 

by RTK techniques for precise relative positioning over long baselines.  

The DD observables have some distinctive features. Double differencing reduces by one the number of each GPS 

observable, because the pivot SV measurements are used in all DD observables, which also introduces a correlation 

between different DD measurements. GPS non-differenced observables are instead customarily modeled as mutually 

uncorrelated, each one affected by the relevant ε term that is assumed a Gaussian zero-mean noise. Letting p+1 be the 

number of SV simultaneously tracked by both receivers and denoting generically with Xf both pseudoranges and 

carrier-phase observables on the frequency f, the non-differenced observables in view of the receiver rec, 

   1 ...
T

p j

f rec rec recrec
X X XX , have a diagonal covariance matrix with equal variances 

2

Xf . Double 

differencing combines the observables of both receivers applying the following linear transformation  

 
 

 

f dj

f DD

f c

T
 
 
 
 

X
X

X
 (5a) 

 
 2 1p p

DDT
 

  ,  ,1 ,1DD p p p pT I U I U    (5b) 

The j superscript is used to emphasize dependency of the DD observable vector 
j

fX  on the pivot SV here and 

whenever the pivot SV cannot be clearly devised from the context, and Um,n and In stand for the m-by-n integer matrix 

consisting of all ones and the n-by-n identity matrix, respectively. Because the same two pivot SV measurements 

appear in each of the p DD observables, their covariance matrix is full, that is, 

   2cov j

f Xf DX  ,  ,: 2T
DD DD p p pD T T U I    (6) 

The core of this CDGPS approach to long-baseline relative positioning, which is frequently used in ground-based 

RTK techniques for baselines of tens of km, is thus the capability to produce fast, accurate, and robust solutions for 

carrier-phase integer ambiguities. To adapt it to space applications over baselines of hundreds of km, a purposely-

designed dynamic-based filter carries out ambiguity resolution. 
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III. On the fly Ambiguity Resolution 

Static initialization is not possible in satellite applications, so integer ambiguities must be resolved in kinematic 

conditions, i.e. on the fly. This is performed in the present work by integrating an EKF with an ILS estimator. The 

integration of the integer estimates into the float solution computed by the EKF presents many critical aspects, which 

can be dealt with in several ways [6]–[12]. The following subsections describe the strategy proposed by the present 

work to cope with this problem. 

A. Float Estimates by EKF 

The application of interest is described in the Earth Centered Earth Fixed (ECEF) reference frame by the following 

standard nonlinear stochastic model to suit the EKF estimation theory: 

 
 

 

1k k k k

k k k k

  


 

x η x w

y h x v
 (7) 

where x is the system state vector, y is the measurement vector, η is the non-linear state propagation function, h is the 

non-linear observation function, w is the process noise vector, v is measurement noise vector, and the subscript k is 

used to denote the variable’s value at time tk. Both w and v are assumed to be zero-mean white Gaussian noises, 

uncorrelated in time, mutually uncorrelated and uncorrelated with the state vector at the same time sample. The 

selected state and measurement vectors are 

 

j

 
 
 
 
 
 

b

b
x

VTEC

a

 , 

1

2

1

2

j

j

j

j

 
 
 
 
  
 

P

P
y

L

L

  (8) 

In Eq.(8), VTEC is the vector including the two vertical total electron contents above the receivers in TECU (Total 

Electron Content Unit, corresponding to 1016 electrons per square meter) and  
T

j
a  =  Tj

wa  1

Tj
a  stands for the 

estimated ambiguity vector including WL and L1 ambiguities. Because of the DD observables correlation in Eq.(6), 

the resulting measurements covariance matrix is block diagonal, i.e. cov(v) = diag  2 2 2 2

1 2 1 2, , ,P P L L    D, where   

is the standard notation for Kronecker’s product. The state vector is related to the measurements by means of the 

following observation model 
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      4,1

j

V a j
h U A A

 
    

 

VTEC
x g b

a
 (9) 

which nonlinearly depends on the baseline via the double difference geometric terms    1 ...
T

j j jpb g gg . The 

observation model is instead linear w.r.t. the VTEC and the cycle ambiguities. The two matrices conveying the effects 

of the ionospheric delays and of the ambiguities are  

 
2

01 1

01

d

V DD

c

A T
 

    
       

     

m

m
 , 

1

2 2

0 0

0 0

0
a pA I



 

 
 
  
 
 
 

 (10) 

The first term in the AV equation is due to the opposite effect of dispersive delays on pseudorange and carrier phase 

measurements, the second term is due to the inverse square frequency dependency of first order ionospheric delays, 

and the remaining p-by-2 matrix maps the VTEC of the two receivers into the slant DD ionospheric delays on L1. The 

coefficients of this matrix are expressed as a function of non-differenced ionospheric delays, with 

 1 ...
T

p j

rec rec rec recm m mm  being the vector enclosing the Lear’s isotropic mapping function [23],[24], which 

maps the vertical TEC of the receiver rec into the L1 ionospheric delays along the ray path coming from the SV sv, 

as follows. 

 

   
2

2
1

40.3 2.037

sin sin 0.076

sv

rec
sv sv

rec rec

m
f E E

 
 

 (11) 

In Eq.(11), the L1 frequency shall be expressed in Hz, the unit of measurement of 
sv

recm  is m3/(number of electrons), 

and the mapping function depends on the elevation angle of sv with respect to rec, denoted by 
sv

recE , which depends 

on the sv and rec Earth-centered positions. As such, the ionospheric delay model introduces an additional nonlinearity 

in the observation model of Eq.(9), being the AV matrix dependent on b.  

In order to maintain accuracy and robustness in the floating estimate of DD ambiguities over long baselines, the 

ionospheric delay terms have been included in the filter state. However, differently from [7] and [25], the VTEC is 

assumed variable along the baseline [26]. When two different VTECs are considered for chief and deputy, the Lear's 

model is potentially able to approximate true DD ionospheric delays with a high correlation and a RMS error of a few 
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centimeters [23]. These features make it particularly suited for aiding the estimation of DD integer ambiguities in 

long-baseline relative navigation. 

The observation model relating the state vector to the observables is thus nonlinear in b due to both the DD 

geometric range vector gj and the mapping function. In addition, it does not depend on the baseline rate, and is linear 

in the remainder of x. Its Jacobian matrix, which is of interest in computing Kalman’s gain, is thus given by  

  4 ,30 p V aG A A





h

x
 (12) 

The G term includes both the geometry and mapping function dependence on b. Nonetheless, for LEO altitudes and 

baselines in the order of few hundreds of kilometers, the dependence of the mapping function on the baseline vector 

is negligible with respect to the Jacobian ∂gj/∂b, thus  

 4,1

jG U  g b  (13) 

The simple dependency of the DD geometric term on b allows an analytic closed-form expression for 
j g b . 

Denote as 
j

b


 g  the κ-th row of the 
j g b  matrix, which is equal by definition to the gradient w.r.t b of the κ-th 

DD geometric range. Carrying out the derivatives, the gradient can be shown to equal the difference of the LoS versors 

between the two SV forming the DD pair and the deputy receiver.  
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The relative dynamics between the two satellites are modeled by a nonlinear Keplerian relative orbital motion 

augmented with J2 effects and with additive process noise wb: 
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where  is the Earth gravitational constant, r  is the Earth equatorial radius, J2 is the second zonal harmonic, ΩE is 

the Earth angular velocity vector in ECEF, rz is the chief position vector’s ECEF z-component, ,  indicates the scalar 

product, and   represents the vector product. The Jacobian of the considered dynamics model is not reported for the 

sake of brevity, but it can be computed analytically after trivial algebra. 

The selected dynamics are a trade-off between complex but accurate trajectory propagation and a computational 

load adequate for real-time onboard implementation. The above model, being concerned with relative dynamics, 

allows modeling differential perturbations (e.g. differential drag) as process noise while keeping low the 

computational effort [27]. Indeed, formation flying satellites usually lie on orbits whose parameters slightly differ and 

have similar ballistic coefficients so to minimize control efforts to maintain the formation. This implies that differential 

perturbations are usually much smaller than absolute ones. Nonetheless, the application of the selected dynamic model 

requires the implementation of the absolute dynamics of the chief satellite. As absolute position errors do not 

contribute significantly to relative position ones, the same model is used to propagate also the absolute chief satellite 

position along with Eq.(15), resulting in a total of six second-order, nonlinear, ordinary differential equations (ODE). 

Solution of the ODE system is achieved using a 4th order Runge-Kutta integration method. In more detail, at each time 

instant tk the GPS receiver of the chief satellite is supposed to compute its internal solution, i.e. chief satellite position 

and velocity. These are propagated forward in time along with bk and 
kb  to yield the predicted absolute and relative 

navigation solutions at tk+1. However, only bk+1 and 
1kb  are retained in the filter’s state vector. As time shifts to tk+1, 

the chief satellite position is again computed as the internal receiver’s solution. The chief absolute position needs not 

to be particularly accurate and the typical accuracy achieved by standard kinematic internal solutions based on 

pseudorange observables [21] allows the proposed approach to work. The relative dynamics model of Eq.(15) strictly 

holds for the baseline vector between the Center of Mass (CoM) of the two satellites, whereas GPS observables are 

relevant to GPS antennas phase centers. There are applications, such as the one presented in section V, for which the 

difference between these two baselines is sub-centimetric and can be ignored. In the more general case, compensating 

this effect might require knowledge of the spacecraft attitude. 

At last, simple stochastic models are used for the remainder of the x vector. More precisely, the VTEC above the 

two receivers are modeled as two scalar first order Gauss-Markov processes with equal correlation time scale , 

whereas cycle ambiguities are modeled by a random constant plus random walk process. 
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

  VTEC VTEC w  , j

aa w  (16) 

Applying standard Kalman filter estimation theory to the models discussed throughout this section, the EKF 

generates a float estimate of the state vector, i.e. an estimate in which all the variables are estimated as real-valued, 

integer cycle ambiguities included. As for all recursive-filtering techniques, the state vector shall be initialized when 

the filter is first applied. Initial baseline and relative velocity are evaluated by differencing the position and velocity 

vectors of the chief and the deputy satellites, respectively, estimated as the standard single-epoch pseudorange solution 

of each receiver. DD integer ambiguities are initialized forming DD geometric ranges with these single epoch solutions 

and neglecting the ionospheric contribution. At last, the initial VTEC is set to zero for both the chief and the deputy 

satellite.  

B. Fixed estimates by integrating ILS methods 

The cycle ambiguities affecting DD carrier phase measurements are integer, but only a float estimate of their value 

is made available by the EKF. For taking advantage of the carrier phase measurements accuracy as in RTK methods, 

the integer nature of the ambiguities must be exploited. ILS estimators are able to search for an optimal vector of 

integers, starting from the float estimate of the ambiguity vector and the relevant covariance matrix. In particular, the 

Least-squares Ambiguity Decorrelation Adjustment (LAMBDA) method is the most used ILS estimator in GPS-based 

relative navigation applications, and is thus used in this paper. The IA estimates delivered by LAMBDA are discrete 

stochastic variables, whose probability mass function depends on the (Gaussian) probability density function (pdf) of 

the float estimates. In cases in which the float estimate pdf is sufficiently sharp to allow neglecting the stochastic 

nature of the LAMBDA integer estimates, these can be used to improve the float baseline vector estimate yielding the 

fixed solution. For simplicity and without loss of generality it is possible to consider a partition of the state vector x in 

which real-valued variables are separated from integer ones. Denote as β the vector comprising all the real-valued 

components of the state (i.e. the baseline, the baseline rate and the two VTECs in the present  case). The fixed baseline 

and covariance matrix, conditioned on the fixed ambiguities, can be computed according to [28] as: 

  1ˆ ˆ ˆ ˆa aaC C
  β β a a  ; 

1ˆ ˆ ˆ ˆ
a aa aC C C C C   

   (17) 

where the symbols ˆ and ˘ refer to the float and fixed estimates, respectively, and Clz stands for the covariance matrix 

between the generic variables l and z.  
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Whenever the float ambiguity estimates do not make it possible to neglect the stochastic nature of the integer 

estimates obtained by LAMBDA, Eq.(17) cannot be used for improving β. Indeed, in presence of errors in the 

estimated IA, the fixed solution can be less accurate than the float one. Establishing the conditions in which the IA 

vector is suitable for being fixed or not is a non-trivial task [29]. In general, the fixed solution is computed only when 

the IA vector can be assumed correct with a certain confidence level. Several integer validation tests have been 

designed for this purpose and are customarily employed in relative positioning by CDGPS [30]. 

In real-time long-baseline applications, the dominating error sources are the DD broadcast ephemeris error and the 

residual DD ionospheric path delay. These errors exhibit a distinctive time-correlation and induce a non-zero bias in 

the ambiguity float estimate. The theoretical assumptions upon which the LAMBDA method and the integer validation 

tests are based do not hold in these applications. In order to employ the proposed low-fidelity computationally efficient 

float solution, time correlation of integer ambiguities shall be exploited as much as possible. More precisely, because 

the cycle ambiguities are constant in time for a specific DD pair, the fixed solution derived from Eq.(17) can also be 

fed back to the EKF for improving the float estimate at the following time instants, closing the loop between the float 

solution and the ILS estimator. This closed-loop arrangement, used in other precise relative positioning applications 

[7], [11], [12], [25], is able to further improve the fixed ambiguities estimate about the correct integer values despite 

the time-correlated ephemeris and ionospheric errors. However, while potentially capable of increasing the 

performance w.r.t. both a purely float and the standard fixing technique, the closed-loop scheme is less robust to 

erroneously fixed integer ambiguities. Wrong IA will affect the filter solution in all the following time instants, 

spoiling the quality of the estimation of future ambiguities. This might easily result into divergence of the solution, 

even for very low fail rates [7].  

When using the closed-loop approach, the integer validation step becomes thus of crucial importance. Lacking the 

applicability of their basic assumptions, standard integer validation tests, handling the vector of ambiguities a as a 

whole, have already shown unsatisfactory performance in long baseline relative positioning of spaceborne receivers, 

even when fed with highly accurate float estimates [11]. For these reasons, they are not applicable in the present 

context. Partial integer ambiguity validation tests are concerned with discriminating between the single ambiguities, 

i.e. separating the correct from the incorrect ones within the a vector. Partial integer validation lacks a theoretical 

background [31], but thanks to the increase in IA fixing performance that can be gained, they are customarily 

employed in long-baseline applications, usually designing the validation tests by common sense and following 
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empirical guidelines (see [7], [11], [12], [17], [25]). These techniques have shown the potentials for substantially 

improving the integer fixing success rate in long baseline applications [17].  

Based on the above observations, the technique proposed in this paper for performing on-the-fly ambiguity 

resolution is to augment the float estimate of the EKF by a closed-loop integer fixing scheme, in which the LAMBDA 

method yields integer ambiguity candidates which are screened by a custom-developed partial integer validation test. 

Integer validation is performed only on the wide-lane integer ambiguities aw, which are explicitly maintained in the 

EKF state vector in place of the usual L2 ones. More precisely, WL validation is performed by applying two different 

tests, which involve residuals of the float wide-lane ambiguity and of the Melbourne-Wubbena (MW) measurement 

combinations [32],[33]. Both tests introduce a maximum value, da and db, respectively, of the relevant residual for the 

integer estimate to be deemed correct. These two threshold values are two additional tunable parameters of the EKF 

whose value depends on the specific application case (see section V for the details). Float ambiguity residual is defined 

as the distance between the float and the integer ambiguity estimate, and is a widely used indicator in standard 

validation tests [30]. The other residual builds upon the MW observables. Let λn and λw be the narrow and wide-lane 

wavelengths [18], respectively. The MW observables are defined as: 

  1
1 n n w w pI            MW y  (18) 

Combining the above definition with the observation model in Eq.(9), the MW combinations can be proved to allow 

direct sampling of the WL ambiguities, i.e. w wMW a . Partial validation of the WL ambiguities is performed by 

screening the individual ambiguities with the validation tests. Let 
w

a


 be the κ-th component of the WL ambiguity 

vector and 
w

n


 its integer counterpart. The κ-th fixed WL is equal to the relevant integer estimate provided by 

LAMBDA only in case both validation tests are passed, that is 

 
ˆif

ˆ otherwise

a w bw w w w

w

w

n n a d n MW d
a

a

    





     
 


 (19) 

It is worth noting that the first test is influenced by the EKF float ambiguity estimates while the second only depends 

on the measurements. Because erroneous fixed IA could potentially corrupt the EKF float estimate in closed-loop 

schemes, the MW residual test is instrumental in limiting possible divergence of the solution and is essential for proper 

operation of the closed-loop filter.  
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Even though this paper makes no attempts to advance the theory in partial integer validation of ILS solutions, the 

proposed validation test has an intuitive theoretical justification. More specifically, partial validation of the 

components of the a vector would be possible with no theoretical difficulties in case the screened individual 

ambiguities would be uncorrelated. Previous results [34],[35], suggest that the wide-lane ambiguities estimates have 

almost uncorrelated variance, especially when residuals in DD ionospheric delay compensation are non-negligible 

w.r.t. a threshold value depending upon the code measurement noise. In long-baseline applications, the magnitude of 

DD ionospheric delays residuals when using Lear’s model is in the order of several centimeters [23], well above the 

threshold values presented in [35]. Thus, WL ambiguities can be reasonably screened individually by partial integer 

validation tests in such applications. This strategy allows exploiting the advantages of the closed-loop scheme, by 

incorporating as much correct WL ambiguities as possible into the fixed solution thanks to their correlation properties, 

while minimizing the fail rate thanks to the precision of WL ambiguity float estimates. These considerations do not 

hold for L1 ambiguities that cannot be screened individually with satisfactory confidence and therefore are kept as 

floats in the EKF. 

Validated WL ambiguities are modeled as deterministic variables, and can be then used to calculate the fixed 

solution by Eq.(17). As shown in Fig. 2, the fixed solution is used to replace the EKF state vector and covariance 

matrix for the prediction step of the next time epoch. After the fixing step, fixed WL integer ambiguities become part 

of the ambiguity resolution’s output vector n  =  T

wn  1

TT
n . Being modeled as deterministic variables, fixed WL 

integer ambiguities have no correlation with any component of the fixed state vector x  and do not need to be further 

retained in the EKF. 
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Fig. 2 Ambiguity resolution logic 

 

Because of the WL validation, fixed solution includes validated WL integer ambiguities and not validated WL and 

L1 ambiguities, which are real numbers. For de-biasing the ionospheric-free carrier-phase observations both WL and 

L1 integer estimates are required. A secondary estimation by LAMBDA is thus performed (see Fig. 2), processing 

only L1 ambiguities with a validated WL counterpart. The resulting L1 integers are then kept into the ambiguity 

resolution output n . Note that these L1 integers are computed on a single-epoch basis. If this secondary LAMBDA 

fails to estimate correctly some L1 ambiguities at a certain time epoch, this does not imply that the error will propagate 

forward in time, as opposed to what happens to WL ambiguities validated within the closed-loop scheme. The fail rate 

of L1 ambiguities, which is defined as the probability that the integer ambiguities are not correct, is thus controlled 

by the accuracy of the fixed solution. Being conditioned on the validated WL ambiguities, the fixed solution accuracy 

is assumed to be sufficient for limiting the fail rate to few percentage points, which is a generally accepted value [30]. 

IV. Kinematic relative positioning 

As previously discussed, a highly accurate kinematic solution can be computed using the vector of integer 

ambiguity estimates n  determined by the on-the-fly ambiguity resolution technique. For exploiting the carrier phase 

measurement accuracy as in RTK techniques, these integer estimates shall be used to compensate for the cycle 

ambiguity biases in the ionospheric-free carrier phase measurements as in Eq.(4).  
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The p double-difference, ionospheric-free carrier-phase observables, denoted by LIF, can be expressed as a linear 

function of the measurement vector y. Recall that LIF do not allow direct sampling of the DD geometric terms, unless 

they are de-biased of the cycle ambiguity term using the n  vector. Because of the partial integer validation tests, the 

n  vector will, in general, comprise q WL integer ambiguities and the corresponding q L1 ones, with q ≤ p. Letting 

IF
L  be the part of the LIF vector that can be de-biased, the following holds. 

  2

2

1
0 0 1

1
IF IA pT I
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        

L y  (20a) 

  
 

4
2

2
2

1
cov

1
IF L D







 


L  (20b) 

In Eq.(20a) the term in square brackets forms ionospheric-free carrier phase measurements combinations from the 

standard four P1,…,L2 observables. In order to be applied to the measurements vector y, which includes observations 

of all the p DD SV couples, it is necessary to inflate it to the appropriate dimensions by the Kronecker product. At 

last, TIA : p → q  stands for the linear transformation (and associated matrix) that allows extracting the q DD pairs 

for which integer estimates of L1 and WL ambiguities exist from all the p ones. 

The covariance of IF
L  can be readily obtained from the one of the y vector applying linear algebra and Kronecker 

product properties, where D’ is the q-by-q matrix having the same structure of D in Eq.(6). Substituting for γ = 60/77 

one gets the well-known results that ionospheric-free combinations have a standard deviation that is about three times 

the one of uncombined DD measurements, which is in the order of the centimeter for modern GPS receivers (see [11] 

and the references therein). Defining 

 IF IF   y L L  ;  1

2
1

1
IF qI


 


       

L n  (21) 

one obtains a vector y′ of de-biased measurements that, being the integer ambiguities modeled as deterministic 

variables, have the same covariance of IF
L . Unlike IF

L , y′ allows sampling directly the DD geometric term of the 

relevant q DD pairs. Indeed, combining the definition of y′ with the observation model in Eq.(9) results in y′= g′(b) 

where g′ = TIA·g.  
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A baseline estimate can be computed based on this model using a single-epoch kinematic filter, applying a 

Weighted Least Square (WLS) algorithm that processes y′ at each time epoch. For applying the WLS algorithm, the 

nonlinear model is linearized about the best available estimate of g′, obtained using the fixed baseline estimate b , 

and using the analytical Jacobian in Eq.(14). Letting 

   ; ;IAG T


        
 b

g
y y h b b b b

b
 ; (22a) 

yields  

 G   y b  (22b) 

Provided that the above linear system is over-determined, i.e. q ≥ 4, an epoch-wise estimate of the correction Δ b  

(necessary for improving b  to obtain the kinematic baseline b ) can be obtained as the WLS solution of the above 

linear system, using the inverse of y′ covariance matrix as the weighing matrix. 

    
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The accuracy of the kinematic baseline depends on several factors. Even assuming the integer ambiguities and the 

observation model in Eq. (22) to be correct, the ranging measurements y′ would be corrupted by a white noise term 

with a covariance given by Eq.(20). Additional effects, however, shall be taken into account. First, the integer 

estimation can have a limited, although hopefully negligible, fail rate. The most likely error of this kind is in missing 

the L1 ambiguity term of one wavelength, which thus causes a ranging error of about 20 cm. Furthermore, the 

observation model in Eq.(22) does not account for all systematic errors, i.e. time-correlated non-Gaussian stochastic 

processes, most notably the DD broadcast ephemeris error. Previous results on spaceborne GPS receivers’ flight data 

suggest that broadcast ephemeris errors are the limiting factor in obtaining accurate absolute positions [21]. Results 

on relative positioning over long baselines using actual flight data, presented in the next section, suggest that broadcast 

ephemeris can induce errors in the order of centimeters in the DD range y′, and are thus a limiting factor in these 

applications as well. The overall accuracy of the kinematic solution depends on how these ranging errors are mapped 

onto the three dimensional baseline. The amplification of ranging errors is governed by the G′ matrix Dilution of 
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Precision (DOP), which, in turn, depends on the relative geometry of the q observations via Eq.(14). For typical DOP 

values, the kinematic baseline can be expected to be accurate at least at the cm-level considering only the measurement 

noise, but is typically much better [36]. As the DOP generally improves as the number q of G′ rows increases, the 

kinematic baseline is not computed when q < 4, to avoid further discriminating between the geometry of the 

observations for simplicity. In this case, the EKF fixed baseline b  becomes the best available estimate, and is used 

for avoiding data gaps in the relative position solution.  

V. Application Case: Relative Positioning of GRACE satellites 

A. Approach for performance assessment 

Relative positioning performance of the developed CDGPS scheme is evaluated using GPS flight data acquired by 

the GRACE mission [37]. The mission consists of two identical satellites in near circular orbit at approximately 500 

km altitude and 89.5 degrees inclination, separated from each other by about 220 km along-track in nominal 

conditions. The satellites are linked by a highly accurate K-Band microwave Ranging (KBR) system. In addition, each 

satellite also carries identical NASA JPL BlackJack dual frequency geodetic grade GPS receivers [38], attitude sensors 

and high precision accelerometers. A post-processed version of GRACE data and measurements, named Level 1B 

(L1B) data [39], is made available to the scientific community by JPL Physical Oceanography Distributed Active 

Archive Center (PODAAC). GPS L1B data employed in the present work consist of a full set of dual frequency carrier-

phase and pseudorange measurements at a 0.1 Hz data rate, including code observations on L1 frequency and semi-

codeless tracking on L2 frequency. Data editing is performed to set the elevation mask to 10 degrees and to detect and 

remove outliers in the GPS measurements. Broadcast ephemeris distributed by the International GNSS Service (IGS) 

are considered to reproduce real-time onboard operations. 

L1B GRACE data products are also used, along with IGS final products, to generate reference data, which are 

exploited to quantify the performance of the CDGPS scheme. These reference data include the magnitude of the 

baseline vector, the baseline components, the DD ionospheric delays, ephemeris error, and the DD integer ambiguities. 

In particular, KBR data have been used to calculate the reference baseline magnitude. The KBR instrument measures 

the change in distance between the satellites with a precision of 10 μm and 0.2 Hz rate. The reference baseline 

magnitude can be estimated accordingly by a specially designed procedure [36]. L1B products include also a GPS 

Navigation (GNV) data product, which contains an estimate of the two spacecraft CoM position and velocity vectors 

every 1 minute. These estimates are obtained as the result of a precise orbit determination tool [39], and typically have 
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a time-varying accuracy of a few centimeters in position, which is not negligible with respect to the order of magnitude 

of the expected estimation error of the kinematic filter. The baseline vector estimation error, obtained by difference 

with GNV data at their reduced rate of 1/60 Hz, is thus less truthful than its magnitude error. Reference values for 

integer ambiguities, DD ionospheric delays, and GPS SV positions are also computed for gaining further insight into 

the performance of the positioning technique. Taking advantage of the accurate knowledge of DD geometric ranges 

given by KBR data, GNV data, and final IGS products, high-accuracy estimates of integer ambiguities and ionospheric 

delays can be obtained. The implemented procedure is not discussed here for brevity and is described in [23], to which 

the interested reader can refer. Ephemeris error is also estimated by comparing broadcast GPS SV positions with final 

IGS products. 

According to KBR and GNV data, the baseline between the spacecraft CoM can be estimated, whereas the CDGPS 

scheme calculates the baseline between the phase centers of the GPS antennas. Therefore, the GPS antenna offset with 

respect to CoM is compensated taking into account the attitude of both satellites, which is provided within L1B 

products as Star Camera Assembly (SCA) data. GPS antennas on board GRACE satellites have a phase center offsets 

of about 41 cm along the z-axis of the body reference frame, which is actively controlled and is mainly directed 

towards the local nadir. Hence, the baseline components between the phase centers of the GPS antennas deviate less 

than a few mm from those between CoMs. Centimetric relative positioning would thus have been possible even 

neglecting GPS antenna offsets. Clock solutions are also provided within L1B data. More precisely, L1B data are time 

tagged to GPS time using post-processed clock solutions computed at a 0.1 Hz data rate. GRACE GPS measurements 

are therefore not affected by the residual timing errors that would be experienced in real-time onboard CDGPS. 

Anyway, as discussed in section II for the reference receivers, the effect of residual timing errors is definitely smaller 

than broadcast and differential ionospheric errors, which makes the selected GRACE dataset suitable to assess the 

performance of the developed filtering approach. 

B. One-day long dataset 

The developed approach has been tested on a one-day long time span. More specifically, the Day Of Year 

(DOY)18, 2009 has been considered in which the satellites reached their maximum distance of about 270 km. While 

this choice allows maximizing DD error terms, in general, January 2009 corresponds to a minimum in the solar cycle, 

and, thus, in the ionosphere electron content. Performance over different ionospheric conditions is evaluated in the 

next section. Filtering of the complete one-day-long dataset took less than 5 minutes to be completed in Matlab® by a 
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standard desktop PC equipped with a Pentium® IV 2.4 GHz processor and 2GB RAM. The execution time is less than 

0.4% the simulated time span, suggesting that the computational load is more than adequate to cope with onboard 

real-time computational requirements. 

The calculation of the integer ambiguities by the dynamic filter requires setting specific tunable parameters. The 

majority of these parameters deals with EKF implementation and thus comprises measurement noise standard 

deviations (STD), state vector initial STD, and process noise STD associated to the selected dynamic models. In 

addition to EKF-related parameters, the thresholds for carrying out the validation of WL ambiguities must be assigned. 

Table 1 lists the selected values for the tunable parameters, where cycles units are referred to the corresponding 

ambiguity, i.e. if the parameter refers to WL (L1) ambiguity the unit is the WL (L1) cycle. The tuning of the EKF has 

been performed by a conventional trial and error procedure, aimed at maximizing the number of fixed ambiguities 

while minimizing the percentage of wrong integers. A single standard deviation is used for dual frequency carrier-

phase observations. Indeed, even if the noise measurement should be lower on carrier phase observations of the L1 

code than on the semi-codeless tracking of the L2 frequency [20], this difference has no practical effect on the 

performance of the filter up to centimetric accuracy.  

 

Table 1. Value of tunable parameters used within the filter 

 Parameter Value 

Measurement noise STD 

Pseudorange (L1) 0.2 m 

Pseudorange (L2) 0.25 m 

Carrier-phase 0.005 m 

Initial STD 

Baseline 0.7 m 

Baseline Rate 0.03 m/s 

VTEC 4 TECU 

IA WL 104 cycles 

IA L1 104 cycles 

Process noise STD 

Base. Acc. 7·10-5 m/s2 

VTEC STD 1.3 TECU/s 

VTEC τ 3 s 

IA WL 10-4 cycles/s 

IA L1 10-3 cycles/s 

WL IA validation 
Float test 0.35 cycles 

MW test 0.28 cycles 

 

 

Fig. 3 reports the correlation between the reference DD ionospheric delays and those estimated by the filter. 

Positive correlation is apparent and DD ionospheric delays are estimated with a root mean square (RMS) error of 

about 4 cm, despite maximum values of about 0.5 meters. The EKF is able to evaluate all the DD ionospheric delays 
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with an accuracy of about 6 cm in 90% of the cases (see Fig. 4). The capability of reducing the biasing contribution 

coming from differential ionospheric delays up to a value that is only a fraction of the L1 wavelength is a key factor 

for supporting the resolution of integer ambiguities. 

 
Fig. 3 Correlation between reference and predicted DD ionospheric delays. 

 

 
Fig. 4 DD ionospheric delays prediction error distribution. 

 

Ambiguity estimation performance suggests that the ionosphere model is indeed effective. More precisely, the 

wide-lane ambiguities are fixed in more than 98% of the cases. The WL ambiguities fail rate is null over a one-day 

long time span, whereas a 3.6 % fail rate is achieved for L1 ambiguities. Compared with typical performances of both 

real-time and post-processing terrestrial and satellite ambiguity resolution schemes (e.g. [11], [17], and [30]), the 

ambiguity estimation performance can be considered quite sharp: the fixing rate is 98%, of which less than 2% are 
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wrong. In addition, such  fail rate has no impact on the filter stability since L1 ambiguities are validated outside the 

dynamic filter. The time profile of the percentage of fixed ambiguities out of the total is shown in Fig. 5. Results show 

that the greatest part of the ambiguities are fixed instantaneously as they appear in the observation equations, at most 

within a 2 or 3 time epochs, i.e. within 30 seconds. The majority of unfixed ambiguities concentrates in three periods 

of the day, each about twenty-minutes long, in which the observation conditions let the WL validation test in Eq.(19) 

be more selective.  

 
Fig. 5. Percentage of fixed cycle ambiguities. 

 

Fig. 6 shows the baseline magnitude error obtained comparing the solutions of the developed CDGPS scheme with 

the highly accurate KBR one. The kinematic solution is shown for q ≥ 4, that is, whenever the number of fixed 

ambiguities allows for de-biasing at least four ionospheric-free carrier-phase observables. The kinematic algorithm 

can be applied in more than 96 % of time epochs thanks to the high capability to correctly fix integer ambiguities. In 

the remaining time epochs, the fixed baseline solution generated by the dynamic filter, shown in Fig. 6 as well, is 

available as a backup to avoid data gaps. The closed-loop EKF solution is in general worse than the kinematic one, 

being affected by both orbital dynamics and ionospheric delay error terms, which are instead compensated for by 

fixing L1 ambiguities in the kinematic approach. The kinematic baseline approximates the reference baseline 

magnitude with a RMS error of about 4 cm and a maximum error below 40 cm in spite of a baseline of almost 270 

km.  
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Fig. 6 Baseline magnitude estimation error. 

 

As previously discussed, the residual error present in the kinematic solution is due to un-modeled systematic 

ranging errors, most notably erroneous compensation of the cycle ambiguity term and DD broadcast ephemeris error, 

which are amplified by the observation geometry via the G´ matrix of Eq.(22). Fig. 7 compares the residual error of 

the kinematic solution to the ephemeris error. Data are shown only in the radial direction, whose error is generally 

worse than along- and cross-track errors. Because of the very low ambiguity fail rate, the residual error is mostly due 

to the broadcast ephemeris, amplified by the radial DOP coming from the G´ matrix. The three components of the 

vector estimation error are reported in Fig. 8, along with their three-sigma bounds computed by the filter. Results 

suggest that the vector relative positioning performance is higher in the cross-track direction and worse in the radial 

one, due to GPS observation geometry. Being the latter modeled within the kinematic solution, the filter is capable of 

predicting the expected error, which is within three sigma bound in most cases. All three components are estimated 

with a RMS error in the order of some centimeters. Table 2 summarizes the performance achieved by the proposed 

algorithm over the selected one-day long dataset. 
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Fig. 7 Radial baseline estimation error and dilution of precision. 

 

 
Fig. 8 Baseline estimation error components. 
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Table 2. Relative positioning performance over one-day long dataset 

Baseline Component 
Estimation Error 

Max, cm. RMS, cm. 

Magnitude (||b||) 35.8 4.2 

Along Track  34.0 4.3 

Cross Track 16.1 2.4 

Radial 83.4 6.8 

Kin. Solution Availability 96.3 % 

Ambiguity 
IA Estimation 

Fixing Rate, % Fail Rate, % 

WL 98.0 0.0 

L1 98.0 3.6 

All 98.0 1.8 

 

C. Robustness to different operating conditions 

This section addresses the robustness of the proposed CDGPS scheme to different operating conditions. More 

precisely, the filter performances are here evaluated under various observation geometries and for different solar 

activity levels.  

The observation geometry depends on the position of the GRACE satellites w.r.t. the GPS constellation. While the 

GPS constellation is phased w.r.t. Earth’s rotation, the GRACE satellites are not, making the observation conditions 

aperiodic. A one-week long dataset, ranging from DOY12 to DOY19, 2009, is used to reproduce a reasonable amount 

of different observation conditions. For making the results comparable across DOYs, the filter is run on each one-day 

long dataset separately. Fig. 9 reports the fixing and fail rates of integer ambiguities together with the percentage of 

time epochs in which the kinematic solution is available. The fixing rate is always higher than 96% with fail rates 

always under 5%, thus making it possible to calculate the kinematic solution in more than 95% of the time epochs. 

The overwhelming majority of DD ambiguities are resolved in less than a few time epochs and the time to first 

kinematic fix is less than 20 seconds in all the dataset, except in DOY19 in which it takes 2 minutes to fix 4 pairs of 

WL and L1 ambiguities, due to an unfavorable observation geometry. As shown in Fig. 10, the baseline magnitude is 

estimated with RMS and maximum errors in the order of 10 cm and 1 meter at most, respectively. The capability to 

get a stable and robust relative positioning solution under different observation geometries is thus clearly 

demonstrated.  
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Fig. 9 Kinematic solution availability time epochs, ambiguities fixing and fail rates. 

 

 
Fig. 10 Baseline magnitude RMS and maximum estimation error. 

 

All previous results refer to DOYs near the minimum of the solar cycle, in which the magnitude of ionospheric 

delays is generally minimum. The filter’s sensitivity to ionospheric conditions is assessed by evaluating the relative 

positioning performances across different phases of the solar activity. Table 3 shows the features of four one-day-long 

datasets chosen to represent the spectrum of possible ionospheric conditions. DD delays magnitude depends on the 

baseline and on the VTEC values characterizing the ionosphere above the receivers’ altitude. The maximum VTEC 

estimated by the filter in January 2009 is in the order of 10 TECU, which, according to IGS final products, corresponds 

to maximum VTEC values on ground of about 30 TECU. With respect to January 2009, the other DOYs in Table 3 

provide ionospheric conditions ranging from typical (for DOY298, 10 and DOY88, 11) to intense for DOY304, 2011, 

which occurs near a local maximum in the ionospheric mean TEC. VTEC values of almost 110 TECU were recorded 
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on ground for DOY304, which result in a maximum DD ionospheric delays at GRACE altitude of about 6.5 meters, 

well above the 0.5 m of January 2009.  

Table 3. Datasets for evaluating sensitivity to ionospheric conditions. 

DOY 
Max. ||b||, 

km 

Max. Ground VTEC, 

TECU 

Max. VTECc, 

TECU 

Max. L1 DD iono-delay, 

m. 

18, 2009 268 31 8.7 47.9 

298, 2010 236 58 15.6 173.6 

88, 2011 217 75 26.4 222.9 

304, 2011 241 107 51.0 659.8 

 

The filter’s performance in these four DOYs is shown in Fig. 11. In DOY304,11 the filter has been retuned w.r.t. 

January 2009 case for dealing with delays one order of magnitude higher, mainly increasing the VTEC process noise. 

Indeed, because of Lear’s model inaccuracies, the higher magnitude of the ionospheric delays causes a 

correspondingly higher ionospheric residual error in the EKF. The overall effect is to increase the ambiguity fail rate 

up to about 15%. However, as in January 2009, the majority of WL ambiguities is still estimated correctly, and the 

higher fail rate concerns the L1 ambiguities. This allows computing the kinematic solution in most time epochs, even 

in intense ionospheric conditions. The fail rate’s increase causes a proportional increase in the baseline RMS and 

maximum estimation error. To a first order, the degradation of all these three performance metrics is proportional to 

the increase in the VTEC values above the receivers’ altitude (see Fig. 12), except for DOY304,11. In these intense 

ionospheric conditions, the quality of the L1 integer ambiguity solution, and thus of the baseline estimation, is 

substantially degraded by the errors in compensating DD delays of several meters. Hence, the working assumption 

that the fixed solution accuracy is sufficient for ignoring the ambiguity fail rate might not be fully applicable in these 

intense ionospheric conditions. Nonetheless, the filter’s structure, based on single-epoch, open-loop fixing of L1 

ambiguities, prevents divergence of the solution. This enhanced stability in relative positioning is a highly desirable 

property for real-time onboard operations. 
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Fig. 11 Filter’s performances under various ionospheric conditions. 

  
Fig. 12 Filter’s performance trend vs, chief’s VTEC. DOY18,09 is taken as a reference. 

 

VI. Conclusion 

An original approach for relative positioning of a formation of two satellites in low Earth orbit using the Global 

Positioning System has been presented. The approach is specifically designed for decimeter-level real-time onboard 

relative positioning in applications where a large inter-satellite separation, in the order of some hundreds of kilometers, 

is required. To preserve a high relative positioning accuracy in spite of the long baseline, the proposed approach 

performs the integer ambiguities resolution separately from the computation of the relative position. The ambiguities 

solution is provided by an Extended Kalman Filter coupled with an Integer-Least-Squares estimator. The relative 

position is instead obtained with high precision as the solution of a conventional kinematic least-square algorithm, 

processing ionospheric-free combinations of carrier-phase measurements de-biased of the integer ambiguities 

computed in the previous step. The approach accuracy and robustness have been verified on real-world measurements 

coming from the Gravity Recovery and Climate Experiment mission, consisting of two identical satellites in near 
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circular orbit with a nominal separation of 220 km. For testing the approach, a full dataset of dual frequency carrier-

phase and pseudorange measurements at 0.1 Hz data rate has been used.  

Approach performance in the relative positioning has been verified first with reference to a one-day long dataset 

relevant to a condition of maximum separation between the two satellites, i.e. about 270 km. Results clearly 

demonstrate the capability of the dynamic filter to estimate double-difference ionospheric delays with accuracy 

adequate to support a correct evaluation of DD integer ambiguities. This result is also confirmed by the capability of 

the filter of performing fast and reliable on the fly ambiguity resolution: the ambiguities fixing rate is about 98%, with 

a fail rate smaller than 2%. In addition, the most part of the ambiguities is fixed instantaneously. Thanks to the high 

capability to fix correctly the integer ambiguities, the kinematic filter can be applied in more than 96% of the time 

epochs, yielding a baseline magnitude estimate with a root-mean-square error of 4 cm and a maximum error below 40 

cm.  

Robustness to observation conditions and ionospheric activity has also been assessed by using different datasets. 

The capability to get a stable and reliable relative position solution as the observation conditions vary is clearly 

demonstrated. Results also suggest that the relative positioning and ambiguity estimation accuracy are proportional to 

the electron content above the receivers. During intense ionospheric activity, the filter operates in limit conditions for 

the applicability of its underlying assumptions. Nonetheless, thanks to its mixed dynamic – kinematic structure, filter 

estimates degrade gracefully despite an increase of double-difference ionospheric delays of more than one order of 

magnitude. 
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